Promoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nitro group proceeds through direct pathway along with formation of several reaction intermediates. Most of these intermediaries reside in a significant well-depth in reference to the entrance channel. Central to the constructed mechanism is H-transfer steps from fcc and hcp hollow sites to the NO/–NH groups through modest reaction barriers. Our computed rate constant for the conversion of p-CNB correlates very well with the experimental finding (0.018 versus 0.033 s–1 at ∼500 K). Plotted species profiles via a simplified kinetics model confirms the experimentally reported high selectivity toward the formation of p-CAN at relatively low temperatures. It is hoped that thermokinetics parameters and mechanistic pathways provided herein will afford a molecular level understanding for γ-Mo2N-mediated conversion of halogenated nitrobenzenes into their corresponding nitroanilines; a process that entails significant industrial applications.
In the present work, zeolite Y has been synthesized successfully by sol-gel method.Zeolite was synthesized by crystallization of the final gel which consist from seeding and feed stock gels at 85 oC. HY zeolite was prepared by an ion exchange process with ammonium chloride solution and then loaded with different percentages of platinum and titanium by the wet - impregnation method.
X-ray Diffraction (XRD), X-ray Florescence (XRF), Scanning Electron Microscopy (SEM), BET surface area and, Crushing strength were used to characterize the synthesized and prepared catalysts . Results showed high crystallinity 90% with silica to alumina ratio 5 for HY, high surface area of 600 m2/g and pore
... Show MoreModifying of HY/Zeolite is by loading nickel for applying catalyst in thermal catalytic cracking of furfural extract-40 from the lubricating base oil unit. The study involved the characterizing of HY-zeolite and promoted catalyst with nickel by X-ray diffraction analysis, Scanning electron microscopy (SEM), BET (Brunauer, Emmett, and Teller), and infrared ray analyses FTIR. The catalytic thermal cracking tubular reactor with a fixed bed with two type catalysts; HY/zeolite and Ni HY/zeolite, individually at a temperature of 580oC with LHSV 5h-1 was investigated. The results indicated that increase the conversion of catalytic cracking of furfural extract-40 also increases the yield of useful petroleum
... Show MoreCatalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copper
oxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solution
pH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,
and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, the
performance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is related
to the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reaction
was strongly
Catalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copperoxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solutionpH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, theperformance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is relatedto the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reactionwas strongly affected by WHSV,
... Show MoreThis work was conducted to study the oxidation of phenol in aqueous solution using copper based catalyst with zinc as promoter and different carrier, i.e. γ-Alumina and silica. These catalysts were prepared by impregnation method.
The effect of catalyst composition, pH (5.6-9), phenol to catalyst concentration ratio (2-0.5), air feed rate (30-50) ml/s, stirring speed (400-800) rpm, and temperature (80-100) °C were examined in order to find the best conditions for phenol conversion.
The best operating conditions which lead to maximum phenol conversion (73.1%) are : 7.5 pH, 4/6 phenol to catalyst concentration, 40 ml/s air feed rate, 600 rpm stirring speed, and 100 °C reaction temperature. The reaction involved an induction period
The δ-mixing ratios have been calculated for several γ-transitions in 90Mo using the 𝛔 𝐉 method. The results are compared with other references the agreement is found to be very good .this confirms the validity of the 𝛔 𝐉 method as a tool for analyzing the angular distribution of γ-ray. Key word: population parameter, γ-ray transition, 𝛔 𝐉 method, multiple mixing ratios.
All the prepared metal complexes of Pt (IV), Au(III), Rh (III), Co (II) and V(IV) with new ligand sodium [5-(p-nitro phenyl)-/4-phenyl-1,2,4-triazole-3-dithiocarbamato hydrazide] (TRZ.DTC) have been synthesized and characterized in solid state by using flame atomic absorption, elemental analysis C.H.N.S, FT-IR ,UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of the complexes formed in ethanolic solution has been studied following the molar ratio method also was studied stability constant and found to be stable in molar ratio1:1 of VL (IV) and CoL(II) while Pt(IV), Au(III) and Rh(III) complexes stable in molar ratio 1:2 as well as the molar absorptivity for these complexes were calculated. From the prev
... Show MoreJean-Paul Sartre and Badr Shakir al-Sayyabe are among the most prominent writers that critiqued the destructive role of capitalism and the patriarchal power system in the period of the Post-World War II crisis. Divided into three chapters, the present study examines two of the most eminent literary works in the history of the Western and Eastern societies in the fifties of the last decade: Jean Paul Sartre’s play : The Respectful Prostitute and Badr Shaker al-Sayyabe’s poem: The Blind Prostitute.
Chapter one discusses the position of the prostitute in a patriarchal societies. Chapter two linguistically analy
... Show MoreThermal and catalytic pyrolysis of waste plastics in an inert atmosphere has been regarded as a creative method, since pyrolysis can convert plastics waste into hydrocarbons that can be used either as fuels or as a source of chemicals.
Natural Iraqi kaolin clay was used to synthesis the NaX nano- zeolite by hydrothermal conditions with average particle size equal to 77.63nm.Thermal decomposition kinetics of high-density polyethylene (HDPE) in the absence and presence of catalysts nano NaX Zeolite was investigated. Thermal and catalytic degradation of HDPE was performed using a thermogravimetric analyzer in nitrogen atmosphere under non-isothermal conditions 4, 7 and 10 °C/min heating rates were employed in thermogravimetric anal
... Show More