The diagnosis of acute appendicitis (AA) sometimes is illusive and the accompanying clinical and laboratory manifestations cannot be used for definitive diagnosis. Objective: This study aimed to evaluate the diagnostic value of neutrophil/lymphocyte ratio (NLR) in detection of AA. Materials and Methods: This is a cross-sectional study that included a total of 80 adult patients with AA and 62 age- and gender-matched patients with abdominal pain due to causes other than AA. Three milliliter of peripheral blood were collected from each participant. The NLR was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count. Receiver operating characteristic curve was used to assess the diagnostic value of NLR in detection of AA cases. Results: Mean NLR in AA patients was 7.18 ± 2.11 compared with 2.68 ± 1.08 in patients with abdominal pain due to causes other than AA with a highly significant difference. The area under the curve was 0.916 (95%confidence interval = 0.842–0.989), P < 0.001. The sensitivity and specificity of the test at NLR = 4.45 were 90% and 83%, respectively. Conclusions: NLR is an easy, inexpensive test that can be used for AA detection. This test is more sensitive and more specific than either total white blood cell or absolute neutrophil count
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
Global Navigation Satellite Systems (GNSS) have become an integral part of wide range of applications. One of these applications of GNSS is implementation of the cellular phone to locate the position of users and this technology has been employed in social media applications. Moreover, GNSS have been effectively employed in transportation, GIS, mobile satellite communications, and etc. On the other hand, the geomatics sciences use the GNSS for many practical and scientific applications such as surveying and mapping and monitoring, etc.
In this study, the GNSS raw data of ISER CORS, which is located in the North of Iraq, are processed and analyzed to build up coordinate time series for the purpose of detection the
... Show MoreExtracting moving object from video sequence is one of the most important steps
in the video-based analysis. Background subtraction is the most commonly used
moving object detection methods in video, in which the extracted object will be
feed to a higher-level process ( i.e. object localization, object tracking ).
The main requirement of background subtraction method is to construct a
stationary background model and then to compare every new coming frame with it
in order to detect the moving object.
Relied on the supposition that the background occurs with the higher appearance
frequency, a proposed background reconstruction algorithm has been presented
based on pixel intensity classification ( PIC ) approach.
Facial identification is one of the biometrical approaches implemented for identifying any facial image with the use of the basic properties of that face. In this paper we proposes a new improved approach for face detection based on coding eyes by using Open CV's Viola-Jones algorithm which removes the falsely detected faces depending on coding eyes. The Haar training module in Open CV is an implementation of the Viola-Jones framework, the training algorithm takes as input a training group of positive and negative images, and generates strong features in the format of an XML file which is capable of subsequently being utilized for detecting the wanted face and eyes in images, the integral image is used to speed up Haar-like features calc
... Show More