The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To deal with this type of problem, a mixture of linear regression is used to model such data. In this article, we propose a genetic algorithm-based method combined with (MM-estimator), which is called in this article (RobGA), to improve the accuracy of the estimation in the final stage. We compare the suggested method with robust bi-square (MixBi) in terms of their application to real data representing blood sample. The results showed that RobGA is more efficient in estimating the parameters of the model than the MixBi method with respect to mean square error (MSE) and classification error (CE).
The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreIn this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro
... Show MoreThe parametric programming considered as type of sensitivity analysis. In this research concerning to study the effect of the variations on linear programming model (objective function coefficients and right hand side) on the optimal solution. To determine the parameter (θ) value (-5≤ θ ≤5).Whereas the result، the objective function equal zero and the decision variables are non basic، when the parameter (θ = -5).The objective function value increases when the parameter (θ= 5) and the decision variables are basic، with the except of X24, X34.Whenever the parameter value increase, the objectiv
... Show MoreExcessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M
... Show MoreWeibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreWe are used Bayes estimators for unknown scale parameter when shape Parameter is known of Erlang distribution. Assuming different informative priors for unknown scale parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
Generally, direct measurement of soil compression index (Cc) is expensive and time-consuming. To save time and effort, indirect methods to obtain Cc may be an inexpensive option. Usually, the indirect methods are based on a correlation between some easier measuring descriptive variables such as liquid limit, soil density, and natural water content. This study used the ANFIS and regression methods to obtain Cc indirectly. To achieve the aim of this investigation, 177 undisturbed samples were collected from the cohesive soil in Sulaymaniyah Governorate in Iraq. Results of this study indicated that ANFIS models over-performed the Regression method in estimating Cc with R2 of 0.66 and 0.48 for both ANFIS and Regre
... Show More