Diyala River is a tributary of Tigris River, it is one of the important rivers in Iraq. It covers a total distance of 445 km (275 miles). 32600 km2is the area that drains by Diyala River between Iraqi-Iranian borders. This research aims to evaluate the water quality index WQI of Diyala River, where three stations were chosen along the river. These stations are D12 at Jalawlaa City at the beginning of Diyala River, the second station is D15 at Baaquba City at the mid distance of the river, and the third station is D17 which is the last station before the confluence of Diyala River with Tigris River at Baghdad city. Bhargava method was used in order to evaluate the water quality index for both irrigation and drinking uses. The results indicated that Diyala river water quality at its beginning was excellent for irrigation and good for drinking, while at the mid distance of the river, it was good for irrigation but heavily polluted and unsafe for drinking. Water quality of the river at the third site was acceptable for irrigation but again severely polluted and unsafe for drinking.
Source, sedimentation, coagulation, flocculation, filter, and tank are parts of a water treatment plant. As a result, some issues threaten the process and affect the drinking water quality, which is required to provide clean drinking water according to special standards and international and local specifications, determined by laboratory results from physical, chemical, and biological tests. In order to keep the water safe for drinking, it is necessary to analyze the risks and assess the pollution that occurs in every part of the plant. The method is carried out in a common way, which is monitoring through laboratory tests, and it is among the standards of the global and local health regulators
Source, sedimentation, coagulation, flocculation, filter, and tank are parts of a water treatment plant. As a result, some issues threaten the process and affect the drinking water quality, which is required to provide clean drinking water according to special standards and international and local specifications, determined by laboratory results from physical, chemical, and biological tests. In order to keep the water safe for drinking, it is necessary to analyze the risks and assess the pollution that occurs in every part of the plant. The method is carried out in a common way, which is monitoring through laboratory tests, and it is among the standards of the global and local health regulators
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show MoreA mathematical model has been formulated to predict the influence of high outdoor air temperature on the performance of small scale air - conditioning system using R22 and alternative refrigerants R290, R407C, R410A. All refrigerants were investigated in the cooling mode operation. The mathematical model results have been validated with experimental data extracted from split type air conditioner of 2 TR capacity. This entailed the construction of an experimental test rig which consists of four main parts. They are, the refrigeration system, psychrometric test facility, measuring instrumentation, and auxiliary systems. The conditioned air was maintained at 25 0C dry bulb and 19 0C wet bulb for all tests. The outdoor ambient air temperatur
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreLiposome-mediated transfection of cancer cells provide a valuable experimental technique to study cellular gene expression and may also be adapted for gene therapy studies. However, the widely recognized advantage of liposome-mediated transfection is high efficiency. Therefore, this study were performed to optimize transfection techniques in human larynx carcinoma cell line Hep-2 using the commercial synthetic lipid TransFast™ Reagent and monitoring the expression efficiency by using the pSV-?-galactosidase Control Vector which encoded ?-galactosidase, maximum transfection efficiency were achieved with TransFast™ Reagent used at the Charge ratios of 2:1 and 0.5 µg DNA/ml, this is indicate that TransFast™ Reagent can be used as an eff
... Show MoreThis study aims to assess the accuracy of digital elevation model (DEM) created with utilization of handheld Global Positioning System (GPS) and comparing with Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. It is known that the quality of the DEM is affected by both of accuracy of elevation at each pixel (absolute accuracy) and accuracy of presented morphology (relative accuracy). The University of Baghdad, Al Jadriya campus was selected as a study area to create and analysis the resulting DEM. Additionally, Geographic Information System (GIS) was used to visualize, analyses and interpolate GPS track points (elevation data) of the study area. In this
... Show MoreThis study was carried out in Baghdad (Al-Jadiriya) in 2006 by detecting ability of aquatic reed plant to remove heavy metals (Chromium) from waste water by batch process of adsorption with considering that acidic solution is best selection for such process with constant initial chromium concentration(60 mg/l),speed of shaking(300 rpm), temperature (30 Co) and constant contact time (4 h) but with different weights of adsorbent (reed) (0.5 ,1 ,2 ,3 and 4 )gm for each 100 ml volume of sample . The results showed that the percentage of the removed chromium were ( 8% ,17.5% ,31% ,40% and 50%) respectively for each sample according to the mass of adsorb
... Show MoreThe aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in
... Show More