The melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating conditions. Both computational fluid dynamic (CFD) and experimental validations proved the good accuracy of the proposed model for further applications. The present research found that the average PV cell temperature can be reduced by about 12 °C with a corresponding improvement in PCM melting duration of 127%. The addition of the metal foam is more effective at low solar radiation, ambient temperatures far below the PCM solidus temperature, and high wind speeds in nonlinear extension. With increasing of tilt angle, the PCM melting duration is linearly decreased by an average value of (13.4–25.0)% when the metal foam convective heat transfer coefficient is changed in the range of (0.5–20) W/m2.K. The present research also shows that the PCM thickness has a positive linear effect on the PCM melting duration, however, modifying the metal foam configuration from 0.5 to 20 W/m2.K has an effect on the PCM melting duration in such a way that the average PCM melting duration is doubled. This confirms the effectiveness of the inclusion of metal foam in the PV/PCM system.
Lead toxicity elicits neurological damage which is a well-known disorder that has been considered to be a major cause for multiple condition such as behavioral defect; mental retardation; and nerve insufficient activity.
This research is designed to estimate potential protective effect of vinpocetine on neurotoxicity stimulated by lead acetate in rats.
Eighteen adult rats of both sexes were randomly enrolled into three groups. Each group includes 6 rats as followings: Group I- Rats were given 0.3ml normal saline solution orally; then intraperitoneal injection of 100μl of the normal saline was given 1h later; this group was considered as control. Group II- Rats were given an intraperitoneal injection of 20mg/kg lead acetate
... Show MoreThe widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.
The present paper puts forward an enhancement for the throughput performance metric by p
... Show MoreThe present study was carried to evaluate antibacterial activity of Acetone, Alcholic (cold and hot) and Aqueaus(water) extracts of Citrus aurantifoliaseeds,against growth of some bacteria isolated from burns infections(Pseudomonas aeruginosa,Escherichia coli, Klebsiellapneumonia,Staphylococcusaureus)fromKindy HospitalIn Baghdad from March to June 2012.Antibiotic Sensitivity was done for all isolated bacteria used in this study.Results showed variation in antibacterial activity of different extracts against all tested bacteria by well diffusion technique in agar and measuring the diameter of inhibition zone, at concentration 250Mg-ml. Acetone extract had the greatest inhibitory effect followed by hot alcoholci extract, and then cold alcohol
... Show MoreIn this study, from a total of 856 mastitis cases in lactating ewes, only 34 Streptococcus agalactiae isolates showed various types of resistance to three types of antibiotics (Penicillin, Erythromycin and Tetracycline). St. agalactiae isolates were identified according to the standard methods, including a new suggested technique called specific Chromogenic agar. It was found that antibiotic bacterial resistance was clearly identified by using MIC-microplate assay (dilution method). Also, by real-time PCR technique, it was determined that there were three antibiotics genes resistance ( pbp2b, tetO and mefA ). The high percentage of isolate carried of a single gene which was the Tetracycline (20.59%) followed by percentage Penicillin was
... Show MoreThis study estimated seven heavy metals (Fe, Cu, Zn, Pb, Ni, Cd, Cr) in water (dissolved and particulate phase), sediments and some aquatic organisms including two species from aquatic plants (Ceratophyllum demersum&Phragmites australis); one species of clam (Psedontopeses euphratics) and two species from fish (Oreochromis aureus& Leuciscus vorax)in four sites within Mashroo AL- Musayyib channel project/ branch of Euphrates river, Babylon , medial of Iraq . This aims to show the concentration of these elements, their fate and the mechanisms of their transmission through the food chain in this lotic aquatic system ; also in addition to examining some physicochemical properties of ri
... Show MoreIn addition to their high quantities of active chemicals, medicinal plants are well-known for their pharmacological qualities, which include immunological modulation. T Consequently, this study aimed to examine the effects of Avena sativa and Glycyrrhiza glabra leaf extracts on immunological responses as measured by blood cytokine and liver enzyme levels. The phytochemical analysis of Avena sativa crude leaf extracts revealed the presence of alkaloids,flavonoids, tannins, phenolic compounds, and saponins but the absence of resins and violet oils. On the other hand, violet oils, flavonoids, tannins, saponins, and glycosides were detected in significant concentration in Glycyrrhiza glabra ethanolic extract, although resins and phenolic compou
... Show MoreThe present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.
Due to its various resistance mechanisms, Pseudomonas aeruginosa is the most prevalent opportunistic infection that kills hospitalized patients. Thus, therapeutic options become limited. Objective: The study aimed to estimate the antibiofilm effectiveness of Conocarpus erectus leaf extracts against MDR P. aeruginosa isolates and examines pelA and algD gene expression. Subjects and Methods: One hundred-fifty clinical samples were collected from five Baghdad hospitals between September 2021 and January 2022. Samples were grown on different mediums. Despite cetrimide agar's ability to detect P. aeruginosa, only 83 isolates developed at 42°C. VITEK 2 compact system identification followed. This study examined 83 of P. aeruginosa isolates for r
... Show MoreThe removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli