This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.
A rapid, sensitive and without extraction spectrophotometric method for determination of clonazepam (CLO) in pure and pharmaceutical dosage forms has been described. The proposed method was simply depended on charge transfer reaction between reduced CLO (n-donor) and metol (N-methyl-p-aminophenol sulfate) as a chromogenic reagent (π- acceptor). The reduced drug, with zinc and concentrated hydrochloric acid, produced a purple colored soluble charge-transfer complex with metol in the presence of sodium metaperiodate in neutral medium, which has been measured at λmax 532 nm. All the variables which affected the developed and the stability of the colored product such as concentration of reagent and oxidant, temperature and time of rea
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
The main focus of research is on the nature of applications in the fields of science and technology, particularly nanotechnology. In this paper, a simple, non-toxic, inexpensive, and environmentally friendly green method was used to synthesize TiO2 nanoparticles using the extraction of portulacaria afra plant leaves and TiCl4 as a precursor. The synthesized titanium dioxide nanoparticles were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction patterns, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The SEM image of TiO2 nanoparticles showed a few spherical, non-agglomerated particles. The average diameter of the nanoparticles, ac
... Show MoreThe main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Abstract: Background: Optical biosensors offer excellent properties and methods for detecting bacteria when compared to traditional analytical techniques. It allows direct detection of many biological and chemical materials. Bacteria are found in the human body naturally non-pathogenic and pathologically, as they are found in other living organisms. One of these bacteria is Escherichia coli (E. coli) which are found in the human body in its natural and pathogenic form. E.coli bacteria cause many diseases, including Stomach, intestines, urinary system infections, and others. The aim of this study: is sensing and differentiation between normal flora and pathogenic E.coli. Material and method:
... Show More