Preferred Language
Articles
/
FhhIEJUBVTCNdQwCzyWr
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.

Scopus Crossref
View Publication
Publication Date
Fri May 28 2021
Journal Name
Journal Of Microbiology And Biotechnology
Bioactive Levan-Type Exopolysaccharide Produced by <i>Pantoea agglomerans</i> ZMR7: Characterization and Optimization for Enhanced Production
...Show More Authors

View Publication Preview PDF
Scopus (26)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Compression of an ECG Signal Using Mixed Transforms
...Show More Authors

Electrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Theoretical And Applied Information Technology
AN ENHANCED EVOLUTIONARY ALGORITHM WITH LOCAL HEURISTIC APPROACH FOR DETECTING COMMUNITY IN COMPLEX NETWORKS
...Show More Authors

Preview PDF
Scopus (5)
Scopus
Publication Date
Thu Dec 01 2022
Journal Name
Neuroscience Informatics
Epileptic EEG activity detection for children using entropy-based biomarkers
...Show More Authors

View Publication
Scopus (19)
Crossref (11)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Artificial Intelligence For Covid-19
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

View Publication
Scopus (35)
Crossref (27)
Scopus Crossref
Publication Date
Wed Apr 28 2021
Journal Name
2021 1st Babylon International Conference On Information Technology And Science (bicits)
Enhanced Twitter Community Detection using Node Content and Attributes
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
An Artificial Intelligence Algorithm to Optimize the Classification of the Hepatitis Type
...Show More Authors

Hepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Constructing a Software Tool for Detecting Face Mask-wearing by Machine Learning
...Show More Authors

       In the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Traitement Du Signal
A Comprehensive Review on Machine Learning Approaches for Enhancing Human Speech Recognition
...Show More Authors

View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref