Due to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically rather than a long time consuming manually gathering for the information. In this article, transfer learning is employed to train two distinct YOLOv8 models for enhanced automatic number plate recognition (ANPR). This approach leverages the strengths of YOLOv8 in handling complex patterns and variations in license plate designs, showcasing significant promise for real-world applications in vehicle identification and law enforcement.
The study was carried out to study the quality of 7 samples of imported frozen chicken that are available in locally markets. These samples were collected from Baghdad markets in June 2010. The results were showed that the all samples were not content the name of company and batch number one the labeling, while the microbial test refer to found contamination in all samples, but it in the limited of Iraqi standers specification for frozen chicken, also note Staphylococcus aureus in all samples, the samples C1 and C2 have Salmonella ohio, while not observe Coliform bacteria in all samples.
Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreThe need for detection and investigation of the causes of pollution of the marshes and submit a statistical study evaluated accurately and submitted to the competent authorities and to achieve this goal was used to analyze the factorial analysis and then obtained the results from this analysis from a sample selected from marsh water pollutants which they were: (Electrical Conductivity: EC, Power of Hydrogen: PH, Temperature: T, Turbidity: TU, Total Dissolved Solids: TDS, Dissolved Oxygen: DO). The size of sample (44) sites has been withdrawn and examined in the laboratories of the Iraqi Ministry of Environment. By illustrating SPSS program) the results had been obtained. The most important recommendation was to increase the pumping of addit
... Show MoreFR Almoswai, BN Rashid, PEOPLE: International Journal of Social Sciences, 2017 - Cited by 22
In the present work, the efficiency of Tri-octyl Methyl Ammonium Chloride (TOMAC) ionic liquid was investigated as new and green demulsifier for three types of Iraqi crude oil emulsions (Nafut Khana (NK), Kirkuk and Basrah). The separation efficiency was studied at room temperature and by using microwave heating technique. Several batch experiments were done to specify the suitable conditions for the emulsification and demulsification which were specified as 45 minutes and 3000 rpm for crude oil emulsification while the ionic liquid doses were (500,300,150,50) ppm and the conditions of microwave heating were 1000 watt and 50 second as irradiation time. The results were very encouraging especially for NK and Kirkuk crude oil emulsions whe
... Show MoreIn this study, the results of the uranium concentrations and specific activity in 10 rice samples are described using a solid-state track detector (CR-39). Samples were collected from various local Iraqi markets with different origins (Iraq, India, America, and Thailand). Our findings found that the results of uranium concentration in all studied samples are ranging from (0.55 ± 0.28 to 1.74 ± 0.31) ppm with a weighted average of (1.24 ± 0.99) ppm. Also, results demonstrate that the specific activity values of the studied samples swing between values of (6.88 ± 3.52 and 21.49 ± 3.85) Bq/Kg. The obtained results of the studied rice samples are indicated that it is less than the acceptable limit of those studies established by ma
... Show More