Calculating the Inverse Kinematic (IK) equations is a complex problem due to the nonlinearity of these equations. Choosing the end effector orientation affects the reach of the target location. The Forward Kinematics (FK) of Humanoid Robotic Legs (HRL) is determined by using DenavitHartenberg (DH) method. The HRL has two legs with five Degrees of Freedom (DoF) each. The paper proposes using a Particle Swarm Optimization (PSO) algorithm to optimize the best orientation angle of the end effector of HRL. The selected orientation angle is used to solve the IK equations to reach the target location with minimum error. The performance of the proposed method is measured by six scenarios with different simulated positions of the legs. The proposed method is compared with procedures that used different optimization algorithms such as Genetic Algorithm (GA), Differential Evolution (DE), and Invasive Weed Optimization (IWO). The Root Mean Square Error (RMSE) and computation time are used as comparison measures. The proposed method gives the best results among others, and it reaches the target location with an average RMSE of 10-12 with 2.5 seconds average computation time.
The paper aims is to solve the problem of choosing the appropriate project from several service projects for the Iraqi Martyrs Foundation or arrange them according to the preference within the targeted criteria. this is done by using Multi-Criteria Decision Method (MCDM), which is the method of Multi-Objective Optimization by Ratios Analysis (MOORA) to measure the composite score of performance that each alternative gets and the maximum benefit accruing to the beneficiary and according to the criteria and weights that are calculated by the Analytic Hierarchy Process (AHP). The most important findings of the research and relying on expert opinion are to choose the second project as the best alternative and make an arrangement acco
... Show MoreAbstract
This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine
... Show MoreThe research aimed at identifying the effect of the think, pair, and share strategy by using educational movies on learning jumping opened legs and closed legs skills on vault in artistic gymnastics for women. It also aimed at identifying the group that learned better the skills understudy. The researcher used the experimental method on second-grade College of Physical Education and Sport Sciences female students. Twelve female students were selected from each of the two sections to form the subjects of the study. The main program was applied for eight weeks with one learning session per week. The data was collected and treated using SPSS to conclude that the think, pair, and share strategy and the traditional program have positive effects
... Show MoreElectro-chemical Machining is significant process to remove metal with using anodic dissolution. Electro-chemical machining use to removed metal workpiece from (7025) aluminum alloy using Potassium chloride (KCl) solution .The tool used was made from copper. In this present the optimize processes input parameter use are( current, gap and electrolyte concentration) and surface roughness (Ra) as output .The experiments on electro-chemical machining with use current (30, 50, 70)A, gap (1.00, 1.25, 1.50) mm and electrolyte concentration (100, 200, 300) (g/L). The method (ANOVA) was used to limited the large influence factors affected on surface roughness and found the current was the large influence f
... Show MoreExploitation of mature oil fields around the world has forced researchers to develop new ways to optimize reservoir performance from such reservoirs. To achieve that, drilling horizontal wells is an effective method. The effectiveness of this kind of wells is to increase oil withdrawal. The objective of this study is to optimize the location, design, and completion of a new horizontal well as an oil producer to improve oil recovery in a real field located in Iraq. “A” is an oil and gas condensate field located in the Northeast of Iraq. From field production history, it is realized the difficulty to control gas and water production in this kind of complex carbonate reservoir with vertical producer wells. In this study, a horizont
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit