synthesis and characterization of New Bidentate schiff base Ligand Type(NO)Donor Atoms Derived from isatin and 3-Amino benzoic acid and Its complexes with Co(||),Cu(||),Cd(||)and Hg(||)Ions
The New Schiff base ligand 4,4'-[(1,1'-Biphenyl)-4,4'-diyl,bis-(azo)-bis-[2-Salicylidene thiosemicarbazide](HL)(BASTSC)and its complexes with Co(II), Ni(II), and Cu(II) were prepared and characterized by elemental analysis, electronic, FTIR, magnetic susceptibility measurements. The analytical and spectral data showed, the stiochiometry of the complexes to be 1:1 (metal: ligand). FTIR spectral data showed that the ligand behaves as dibasic hexadentate molecule with (N, S, O) donor sequence towards metal ions. The octahedral geometry for Co(II), Ni(II), and Cu(II) complexes and non electrolyte behavior was suggested according to the analysis data.
This paper deals with the preparation of new monomers and polymers which including heterocyclic unit. The diacid chlorides compounds [1-3] were prepared from the reaction of glutaric acid, adipic acid, terephthalic acid with thionyl chloride. Succinic acid reacted with ethanol to produce compound [4]. Compound [4] reacted with hydrazine hydrate to obtain succinic hydrazide [5].Compound [5] reaction with CS2 and KOH in absolute ethanol to produce compound [6].The polymers [7-12] have been created by reacting diacid chlorides compounds [1-3] with compound[5] or [6] in dry pyridine with some drops of DMF. The topology of produced compounds has characterized through their spectral and analytical data as in FT-IR spectra, Thermal analysis [DSC,
... Show MoreThis research, involved synthesis of some new 1,2,3-triazoline and 1,2,3,4- tetrazole derivatives from antharanilic acid as starting material .The first step includes formation of 2-Mercapto-3-phenyl-4(3H)Quinazolinone (0) through reacted of anthranilic acid with phenylisothiocyanate in ethanol, then compound (0) reaction with chloro acetyl chloride in dimethyl foramamide (DMF) to prepare intermediate S-(α-chloroaceto-2-yl)-3-phenylquinazolin-4(3H)-one (1); compound (1) reacted with sodium azide to yield S-(α-azidoaceto-2-yl)-3-phenylquinazolin-4(3H)-one (2), while Schiff bases (3-10) were prepared from condensation of substituted primary aromatic amines with different aromatic aldehydes in absolute ethanol as a solvent. Compound (2)
... Show MoreThe new ligand [N1,N4-bis((1H-benzo[d]Glyoxalin-2-yl)carbamothioyl)Butanedi amide] (NCB) derived from Butanedioyl diisothiocyanate with 2-aminobenz imidazole was used to prepare a chain of new metal complexes of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Ag(I), Cd(II) by general formula [M(NCB)]Xn ,Where M= Cr(III), n=3, X=Cl; Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Cd(II) ,n=2 , X=Cl; Ag(I), n=1, X=NO3. Characterized compounds on the basis of 1H, 13CNMR (for (NCB), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H, %N and %S, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA),while its corrosion inhibition for mild steel in Ca(OH)2 solution is studied by weight loss. These measureme
... Show More
Diazotization reaction between quinolin-2-ol and (2-chloro-1-(4-(N-(5-methylisoxazol-3-yl)sulfamoyl)phenyl)-2l4-diazyn-1-ium was carried out resulting in ligand-HL, this in turn reacted with the next metal ions (Ni2+, Pt4+, Pd2+, and Mn2+) forming stable complexes with unique geometries such as (tetrahedral for both Ni2+ and Mn2+, octahedral for Pt4+ and square planer for Pd2+ ). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and the coordination with metal ion through it. Pyrolysis (TGA &
... Show MoreNew chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complex
... Show MoreNew chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complexes are identified as octahedral for (Rh & Pt) complexes a
... Show MoreDuring of Experimental result of this work , we found that the change of electrical conductivity proprieties of tin dioxide with the change of gas concentration at temperatures 260oC and 360oC after treatment by photons rays have similar character after treatment isothermally. We found that intensive short duration impulse annealing during the fractions of a second leads to crystallization of the films and to the high values of its gas sensitivity.
Activated carbon loading with metals oxides is new adsorbents and catalyst, which seem very promising for desulfurization process. The present study deals with the preparation of three metals oxides loaded on activated carbon (AC). The tri composite of ZnO/NiO/CoO/AC was characterized by X-Ray Diffraction (XRD), X-Ray florescence (XRF), N2 adsorption for BET surface area, pore volume and Atomic Force Microscopy (AFM). The effect of calcination temperature is investigated. The best calcination temperature is 250oC based on the presence of phase, low weight loss and keep at high surface area. The surface area and pore volume of prepared tri composite are 932.97m2/g and 0.6031cm3/g respec
... Show More