Preferred Language
Articles
/
FhbCtIcBVTCNdQwCO11W
Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods

Crossref
View Publication
Publication Date
Sun Jul 01 2012
Journal Name
Baghdad University College Of Education Ibn Al-haitham
Numerical Solution of Linear System of Fredholm Integral Equations Using Haar Wavelet Method

The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.

View Publication
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
On Existence and Uniqueness of an Integrable Solution for a Fractional Volterra Integral Equation on 𝑹+

In this paper, by using the Banach fixed point theorem, we prove the existence and uniqueness theorem of a fractional Volterra integral equation in the space of Lebesgue integrable 𝐿1(𝑅+) on unbounded interval [0,∞).

Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
On a Subclass of Analytic and Univalent Functions with Positive Coefficients Defined by a Differential Operator

In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:  

 

which is defined in the open unit disk  satisfying the following condition

This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
A New Mixed Nonpolynomial Spline Method for the Numerical Solutions of Time Fractional Bioheat Equation

In this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Mathematics Trends And Technology (ijmtt)
Publication Date
Mon Nov 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Solution of Riccati matrix differential equation using new approach of variational ‎iteration method

To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was ‎proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the ‎exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the ‎modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact ‎solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which ‎shows the reliability and applicability of the proposed approach. ‎

Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Re-Evaluation Solution Methods for Kepler's Equation of an Elliptical Orbit

An evaluation was achieved by designing a matlab program to solve Kepler’s equation of an elliptical orbit for methods (Newton-Raphson, Danby, Halley and Mikkola). This involves calculating the Eccentric anomaly (E) from mean anomaly (M=0°-360°) for each step and for different values of eccentricities (e=0.1, 0.3, 0.5, 0.7 and 0.9). The results of E were demonstrated that Newton’s- Raphson Danby’s, Halley’s can be used for e between (0-1). Mikkola’s method can be used for e between (0-0.6).The term  that added to Danby’s method to obtain the solution of Kepler’s equation is not influence too much on the value of E. The most appropriate initial Gauss value was also determined to

... Show More
Scopus (10)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Fme Transactions
Unsteady nonlinear panel method with mixed boundary conditions

A new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
On Controllability of Impulsive Fractional Integro-differential Nonlocal System with State

      This paper is concerned with the controllability of a nonlinear impulsive fractional integro-differential nonlocal control system with state-dependent delay in a Banach space. At first, we introduce a mild solution for the control system by using fractional calculus and probability density function. Under sufficient conditions, the results are obtained by means of semigroup theory and the Krasnoselskii fixed point theorem. Finally, an example is given to illustrate the main results.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Numerical Solution of Energy Equation in Porous Channels under Effects of Radiation Field

     In this paper, we built a mathematical model for convection and thermal radiation heat transfer of fluid flowing through a vertical channel with porous medium under effects of horizontal magnetic field (MF) at the channel. This model represents a 2-dimensional system of non-linear partial differential equations. Then, we solved this system numerically by finite difference methods using Alternating Direction Implicit (ADI) Scheme in two phases (steady state and unsteady state). Moreover, we found the distribution and behaviour of the heat temperature inside the channel and studied the effects of Brinkman number, Reynolds number, and Boltzmann number on the heat temperature behaviour. We solved the system by buildi

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF