The presence of antibiotic residues such as ciprofloxacin (CIPR) in an aqueous environment is dangerous when their concentrations exceed the allowable. Therefore, eliminating these residues from the wastewater becomes an essential issue to prevent their harm. In this work, the potential of efficient adsorption of ciprofloxacin antibiotics was studied using eco-friendly ZSM-5 nanocrystals‑carbon composite (NZC). An inexpensive effective natural binder made of the sucrose-citric acid mixture was used for preparing NZC. The characterization methods revealed the successful preparation of NZC with a favorable surface area of 103.739 m2/g, and unique morphology and functional groups. Investigating the ability of NZC for adsorbing CIPR antibiotics conducted at different conditions showed that 0.3 g of NZC achieved outstanding adsorption for 150 ppm CIPR antibiotic from 100 mL solutions at mixing speed of 200 rpm, solution pH of 4–6, and solution temperature of 25–30 ◦C. Estimating the values of ΔH◦, ΔS◦, and ΔG◦ confirmed that the adsorption process of CIPR antibiotics by NZC was feasible, exothermic and spontaneous. The Freundlich and pseudo-second-order models well fitted the adsorption process's experimental data. The results of both the kinetic and isotherm studies showed that the adsorption process of CIPR antibiotics by NZC is simultaneously composed of physical and chemical adsorption on the heterogeneous adsorption sites in multilayers. Also, the intra-particle diffusion was not the controlling step and the external surface adsorption influenced the adsorption of CIPR. From the abovementioned results, NZC is recommended as a highly efficient adsorbent for the removal of CIPR-loaded effluents.
A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show MoreOne of the significant environmental problems is the pollution of water by dyes;. Biological treatment method was used, which is one of the effective ways to reduce this sort of pollution as it is environment friendly, economic and does not require any expertise. Under controlled conditions, this study estimated the efficacy of dry biomass for Bacillus cereus to reduce Direct Blue 2 dye from the aqueous solution. The optimum conditions such as pH values, contact time and concentration of dyes, were used in this research. The end results showed that the adsorption efficiency, when using a weight of bacterial biomass 0.2 g/50mL, reached 69.2% at a concentration of 10 ppm after one hour at 40°C and pH5. While it reached 5
... Show MoreCurrent study was carried out to determine the adsorption ability of the Multiwall carbon nanotubes (MWCNTs) by adsorption Malachite Green dye from an aqueous solution. Crystal structure of the materials was measured using powder X-rays diffraction (PXRD), UV–Vis diffuse reflectance and specific surface area (BET). Many parameters that affecting the adsorption process such as contact time, pH, adsorbent dosage, initial dye concentration and temperature were studied. The outcome showed that an increasing occurred in the adsorbent dosage and the rate of dye removal, and the best efficiency for Malachite Green dye removal was amounted 99. 11 %. The results were obtained at optimal reaction conditions were pH = 5.5, cata
... Show MoreThis studies deals with investigated the potential of a Iraqi bentonite clay for the adsorption of bromo phenol red dye from contaminated water. Impulse adsorption experiments were performed. The contact time influence of initial dye concentration, temperature, pH, ionic strength, partical size adsorbent and adsorbent dosage on bromo phenol red adsorption are investigated in a series of batch adsorption experiments. Adsorption equilibrium data were analyzed and described by the Freundlich, Langmuir and temkin isotherms equations. Thermodynamic parameters inclusive the Gibbs free energy (∆G• ), enthalpy (∆H• ), and entropy (∆S• ), were also calculated. These parameters specified that adsorption of bromo phenol red onto bentonite
... Show MoreThis studies deals with investigated the potential of a Iraqi bentonite clay for the adsorption of bromo phenol red dye from contaminated water. Impulse adsorption experiments were performed. The contact time influence of initial dye concentration, temperature, pH, ionic strength, partical size adsorbent and adsorbent dosage on bromo phenol red adsorption are investigated in a series of batch adsorption experiments. Adsorption equilibrium data were analyzed and described by the Freundlich, Langmuir and temkin isotherms equations. Thermodynamic parameters inclusive the Gibbs free energy (∆G•), enthalpy (∆H•), and entropy (∆S•), were also calculated. These parameters specified tha
... Show MorePersistence of antibiotics in the aquatic environment has raised concerns regarding their potential influence on potable water quality and human health. This study analyzes the presence of antibiotics in potable water from two treatment plants in Baghdad City. The collected samples were separated using a solid-phase extraction method with hydrophilic-lipophilic balance (HLB) cartridge before being analyzed. The detected antibiotics in the raw and finished drinking water were analyzed and assessed using high-performance liquid chromatography (HPLC), with fluorometric detector and UV detector. The results confirmed that different antibiotics including fluoroquinolones and
Commercial, industrial, and military activity, largely in the 19th and 20th centuries, have led to environmental pollution that can threaten human health and ecosystem function, liquid gas petroleum (LPG) products are the major sources of energy for industry and daily life that cause environmental contamination during various stages of production, transportation, refining and use. Screening of bacterial isolate by using clear zone techniques and biomass and optical density. Results revealed that isolate Burkholdaria cepatia showed a high ability for hydrocarbons biodegradation and this isolate identified depending on morphological cultural, gram stain, microscopic features, biochemical tests, and VITEK2 compact. In this study,
... Show MoreTwo derivatives of Iimidazolidin 4-one (IMID4) and Oxazolidin 5-one (OXAZ5), were investigated as corrosion inhibitors of corrosion carbon steel in sea water by employing the theoretical and experimental methods. The results revealed that they inhibit the corrosion process and their %IE followed the order: IMID4 (89.093%) > OXAZ5 (80.179%). The %IE obtained via theoretical and experimental methods were in a good agreement with each other. The thermodynamic parameters obtained by potentiometric polarization measurements have supported a physical adsorption mechanism which followed Langmuir adsorption isotherm. Quantum mechanical method of Density Functional Theory (DFT) of B3LYP with a level of 6-311++G (2d, 2p) were used to calculate
... Show More