ABSTRACT The antibacterial and antbiofilm activities of water extract of Calendula officinalis flowers against some of enteropathogenic bacteria was studied, also phytochemical screening and determination of antioxidant activity of the extract has been investigated. The results showed that the water extract of C. officinalis exhibited a good antibacterial activity against all pathogenic bacterial isolates (Salmonella, Shigella dysenteriae, Shigella flexneri, Shigella sonnei and E. coli) especially at concentration 100 µg/ml in contrast with the control cefotan antibiotic. S. sonnei was more sensitive to extract than other bacteria with highest inhibition zone (23 mm). The preliminary phytochemical tests results indicated the presence of alkaloids, saponins, flavonoids, terpenoids, glycosides and phenols, while tannins and reducing sugars absence in the extracts. Water extract (at concentration 100 µg/ml) caused 74.6% lipid peroxidation inhibition of linoleic acid emulsion, this activity was greater than other concentrations (25 and 50 µg/ml) and standard α-tocopherol (63%). Also, it was found that aqueous extracts decreased the adherent growth of bacteria on glass tubes. The results indicated that all isolates have the ability to form biofilms with different thickness degrees, the absorbance values were ranged between (1.04 - 1.68), the Salmonella isolate was the best isolate formed biofilm with highest absorbance value (1.68). On the other hand C. officinalis extract inhibited bacterial adhesion on polystyrene surface and consequently caused biofilms detachment and this revealed decreased in absorbance values of biofilms. These reported activities for C.officinalis flowers extract allow their listing as potential antibiofilm, antibacterial and antioxidant natural agents. This might suggest their use as therapeutic agents for treatment enteric infections.
The useful of remote sensing techniques in Environmental Engineering and another science is to save time, Coast and efforts, also to collect more accurate information under monitoring mechanism. In this research a number of statistical models were used for determining the best relationships between each water quality parameter and the mean reflectance values generated for different channels of radiometer operate simulated to the thematic Mappar satellite image. Among these models are the regression models which enable us to as certain and utilize a relation between a variable of interest. Called a dependent variable; and one or more independent variables
Studied the effect of foliar fertilizers Alaongrin results showed that spraying fertilizer Alaongrin and Fertilizers and Ministry of Agriculture and rack licorice extract every three weeks after thirty days from planting seedlings
This study was conducted to study the cytogenetic effect of both alcoholic and water extracts of propolis on mice. Three different samples of propolis were collected from three different regions of Iraq (Najaf, Arbil and Baghdad) to be used in this study. The cytotoxic effect of two different doses of each extracted sample was measured by employing cytogenetic analysis which included (mitotic index (MI), chromosomal aberrations (CAs), micronucleus index (MN) and sperm abnormalities). Results showed that significant increase in MI and significant reduction in MN, CAs and sperm abnormalities percentage were seen after treatment with both alcoholic and water extract of the three samples when compared with negative control, and alcoholic extrac
... Show MoreEpoxy (EP) – Silica (SiO2) composites are well known composites used in microelectronic industry . So it is important to study their dielectric behavior under different conditions such as
the presence carbon black (UV absorber) and immersion in the water for 30 days .
Dielectric properties were calculated over the frequency range 102 – 106 Hz for epoxy composites with different weight % of micrometer 1.5μm SiO2 particles (60%, 65% and 70wt%) modified with 0.5wt% silane coupling agent to improve adhesion between EP and SiO2 phases .
Experimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen