The present study was carried out to compare the physicochemical characteristics of eggs of guinea fowl, turkeys and domestic chickens outdoor reared in traditional farms in Baghdad, Iraq. A total of 166 fresh eggs; 32 eggs from guinea fowls (Numida meleagris), 44 eggs from turkeys (Meleagris gallopavo) and 90 eggs from domestic chickens; were collected. Egg weight, percentage of egg components, chemical composition (protein, lipids, and ash), and lipid profile were determined. Results revealed the significant differences in egg weight among studied birds. The average egg weights for guinea fowl, turkey, and indigenous chicken were 48.51 ± 0.72, 52.15 ± 0.74 and 61.24 ± 0.22 g, respectively. No significant differences were found in egg components and the chemical composition of the edible portions of the eggs among studied birds. However, the lipid profile of egg yolk indicated that egg cholesterol and LDL levels were significantly higher in guinea fowl and turkey compared with those in indigenous chickens, whereas native chicken has high values of HDL compared to guinea fowl and turkey. There were no significant differences in the triglyceride level in egg yolks among the studied fowls. In conclusion, although egg weight was significantly different among studied birds, eggs of guinea fowl, turkeys, and domestic chickens were similar in nutritional components.
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreIn recent decades, drug modification is no longer unusual in the pharmaceutical world as living things are evolving in response to environmental changes. A non-steroidal anti-inflammatory drug (NSAID) such as aspirin is a common over-the-counter drug that can be purchased without medical prescription. Aspirin can inhibit the synthesis of prostaglandin by blocking the cyclooxygenase (COX) which contributes to its properties such as anti-inflammatory, antipyretic, antiplatelet and etc. It is also being considered as a chemopreventive agent due to its antithrombotic actions through the COX’s inhibition. However, the prolonged use of aspirin can cause heartburn, ulceration, and gastro-toxicity in children and adults. This review article hi
... Show More
This study involved the effect of the aqueous extracts of two plants, Origanum vulgare L.(1), Trigonella Foenum Graecum L. (Fenugreek) seeds(2) on the growth of cancer cell lines. Rhabdomyo sarcomas (RD) of human cell line and female intestine cells of Albino mice (L20B) in vitro System. These extracts were compared with the known anticancer drug Cis-platinum(Cis-Pt) as a positive control. The phytochemical tests were used for screening the active compounds in plants. The inhibition activity assay was used as a parameter of the cytotoxic effect of these extracts. Cancer cell lines were treated with four concentrations of Cis-platin, 31.25, 62.5, 125 and 250 ?g/ml for 72 hour exposure time. The same concentrations were used for the other ext
... Show MoreThe technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.
There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreAbstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.
The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline
... Show MoreGross domestic product (GDP) is an important measure of the size of the economy's production. Economists use this term to determine the extent of decline and growth in the economies of countries. It is also used to determine the order of countries and compare them to each other. The research aims at describing and analyzing the GDP during the period from 1980 to 2015 and for the public and private sectors and then forecasting GDP in subsequent years until 2025. To achieve this goal, two methods were used: linear and nonlinear regression. The second method in the time series analysis of the Box-Jenkins models and the using of statistical package (Minitab17), (GRETLW32)) to extract the results, and then comparing the two methods, T
... Show More