Given that the Crimean and Congo hemorrhagic fever is one of the deadly viral diseases that occur seasonally due to the activity of the carrier “tick,” studying and developing a mathematical model simulating this illness are crucial. Due to the delay in the disease’s incubation time in the sick individual, the paper involved the development of a mathematical model modeling the transmission of the disease from the carrier to humans and its spread among them. The major objective is to comprehend the dynamics of illness transmission so that it may be controlled, as well as how time delay affects this. The discussion of every one of the solution’s qualitative attributes is included. According to the established basic reproduction number, the stability analysis of the endemic equilibrium point and the disease-free equilibrium point is examined for the presence or absence of delay. Hopf bifurcation’s triggering circumstance is identified. Using the center manifold theorem and the normal form, the direction and stability of the bifurcating Hopf bifurcation are explored. The next step is sensitivity analysis, which explains the set of control settings that have an impact on how the system behaves. Finally, to further comprehend the model’s dynamical behavior and validate the discovered analytical conclusions, numerical simulation has been used.
The present study intends to prepare nanofibers mat of polyacrylonitrile by electrospinning technique and investigates their adsorption capacity to Congo red dye from the aqueous solution, after characterize it by different techniques such as FTIR, SEM, EDA, XRD and BET. The influence factors on adsorption were studied including adsorbent dosage, initial concentration, contact time, pH and ionic strength. The results confirmed that the increasing in pH decreases the adsorption capacity. So, the optimum adsorbent dosage, initial concentration and contact time were 0.006 g, 25 mg/L and 150 min respectively. The isotherm models of Freundlich and Langmuir were applied on the experimental adsorption data to evaluate the maximum capacity and ener
... Show MoreThe interplay of predation, competition between species and harvesting is one of the most critical aspects of the environment. This paper involves exploring the dynamics of four species' interactions. The system includes two competitive prey and two predators; the first prey is preyed on by the first predator, with the former representing an additional food source for the latter. While the second prey is not exposed to predation but rather is exposed to the harvest. The existence of possible equilibria is found. Conditions of local and global stability for the equilibria are derived. To corroborate our findings, we constructed time series to illustrate the existence and the stability of equilibria numerically by varying the different values
... Show MoreLocal and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
There are many factors effect on the spread of infectious disease or control it,
some of these factors are (immigration and vaccination). The main objective of this
paper is to study the effect of those factors on the dynamical behavior of an SVIR
model. It is assumed that the disease is spread by contact between members of
populations individuals. While the recovered individuals gain permanent immunity
against the disease. The existence, uniqueness and boundedness of the solution of
this model are investigated. The local and global dynamical behaviors of the model
are studied. The local bifurcations and Hopf bifurcation of the model are
investigated. Finally, in order to confirm our obtained results and specify t
In this paper, we study the incorporation of the commensalism interaction and harvesting on the Lotka–Volterra food chain model. The system provides one commensal prey, one harvested prey, and two predators. A set of preliminary results in local bifurcation analysis around each equilibrium point for the proposed model is discussed, such as saddle-node, transcritical and pitchfork. Some numerical analysis to confirm the accruing of local bifurcation is illustrated. To back up the conclusions of the mathematical study, a numerical simulation of the model is carried out with the help of the MATLAB program. It can be concluded that the system's coexistence can be achieved as long as the harvesting rate on the second prey population is
... Show MoreIn this paper, chaotic and periodic dynamics in a hybrid food chain system with Holling type IV and Lotka-Volterra responses are discussed. The system is observed to be dissipative. The global stability of the equilibrium points is analyzed using Routh-Hurwitz criterion and Lyapunov direct method. Chaos phenomena is characterized by attractors and bifurcation diagram. The effect of the controlling parameter of the model is investigated theoretically and numerically.
The appearance of Mixed Mode Oscillations (MMOs) and chaotic spiking in a Light Emitting Diode (LED) with optoelectronic feedback theoretically and experimentally have been reported. The transition between periodic and chaotic mixed-mode states has been investigated by varying feedback strength. In incoherent semiconductor chaotically spiking attractors with optoelectronic feedback have been observed to be the result of canard phenomena in three-dimensional phase space (incomplete homoclinic scenarios).