Given that the Crimean and Congo hemorrhagic fever is one of the deadly viral diseases that occur seasonally due to the activity of the carrier “tick,” studying and developing a mathematical model simulating this illness are crucial. Due to the delay in the disease’s incubation time in the sick individual, the paper involved the development of a mathematical model modeling the transmission of the disease from the carrier to humans and its spread among them. The major objective is to comprehend the dynamics of illness transmission so that it may be controlled, as well as how time delay affects this. The discussion of every one of the solution’s qualitative attributes is included. According to the established basic reproduction number, the stability analysis of the endemic equilibrium point and the disease-free equilibrium point is examined for the presence or absence of delay. Hopf bifurcation’s triggering circumstance is identified. Using the center manifold theorem and the normal form, the direction and stability of the bifurcating Hopf bifurcation are explored. The next step is sensitivity analysis, which explains the set of control settings that have an impact on how the system behaves. Finally, to further comprehend the model’s dynamical behavior and validate the discovered analytical conclusions, numerical simulation has been used.
The Zubair reservoir in the Abu-Amood field is considered a shaly sand reservoir in the south of Iraq. The geological model is created for identifying the facies, distributing the petrophysical properties and estimating the volume of hydrocarbon in place. When the data processing by Interactive Petrophysics (IP) software is completed and estimated the permeability reservoir by using the hydraulic unit method then, three main steps are applied to build the geological model, begins with creating a structural, facies and property models. five zones the reservoirs were divided (three reservoir units and two cap rocks) depending on the variation of petrophysical properties (porosity and permeability) that results from IP software interpr
... Show MoreAn analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Abstract
The purpose of our study was to develop Dabigatran Etexilate loaded nanostructured lipid carriers (DE-NLCs) using Glyceryl monostearate and Oleic acid as lipid matrix, and to estimate the potential of the developed delivery system to improve oral absorption of low bioavailability drug, different Oleic acid ratios effect on particle size, zeta potential, entrapment efficiency and loading capacity were studied, the optimized DE-NLCs shows a particle size within the nanorange, the zeta potential (ZP) was 33.81±0.73mV with drug entrapment efficiency (EE%) of 92.42±2.31% and a loading capacity (DL%) of 7.69±0.17%. about 92% of drug was released in 24hr in a controlled manner, the ex-vivo intestinal p
... Show MoreBackground: This study designed to shade light on the important role of CBCT in accurate localization of the impacted maxillary canines. Materials and method: Fifty two unilateral and bilateral impacted maxillary canines from 30 patients (24 females and 6 males) were evaluated by a volumetric 3D images obtained from cone beam CT. All samples attended to the specialist health center of dentistry in Al-Sadder City referred to CBCT by oral surgeons or orthodontists to detect the exact position of impacted upper canine in cases when there was no bulging buccally or palatally which aids to detect the exact position. Results: Mesio-palatal angulations had the highest rate (63.5%) followed by mesio-labial (19.2%), vertical (labial) (9.6%), disto-p
... Show MoreThe study was performed to analyze the oropharynx airway and examine the influence of age and gender on the oropharynx volume configuration using cone beam computed tomography.
This study examined the cone beam computed tomographic images of 51 patients 25 male and 26 females, group matched for age and gender. The oropharynx airway volume and area between the posterior nasal spine and top of the epiglottis were measured and compared.
Finite element method is the most widely numerical technique used in engineering field. Through the study of behavior of concrete material properties, various concrete constitutive laws and failure criteria have been developed to model the behavior of concrete. A feature of the Finite Element program (ATENA) is used in this study to model the behavior of UHPC corbel under concentrated load only. The Finite Element (FE) model is followed by verification against experimental results. Some variable effects on the shear capacity of the UHPC corbels are also demonstrated in a parametric study. A proposed design equation of shear strength of UHPC corbel was presented and checked with numerical results.
The bony pelvis has a major role in weight transmission to the lower limbs. The complexities of its geometric form, material properties, and loading conditions render it an open subject to biomechanical analysis.
The present study deals with area measurement, and three-dimensional finite element analysis of the hip bone to investigate magnitudes, load direction, and stress distribution under physiological loading conditions.
The surface areas of the auricular surface, lunate surface, and symphysis pubis were measured in (35) adult hip bones. A solid model was translated into ANSYS parametric design language to be analyzed by finite element analysis method under different loading conditions.
The surface
... Show MoreIn the present work, different remote sensing techniques have been used to analyze remote sensing data spectrally using ENVI software. The majority of algorithms used in the Spectral Processing can be organized as target detection, change detection and classification. In this paper several methods of target detection have been studied such as matched filter and constrained energy minimization.
The water body mapping have been obtained and the results showed changes on the study area through the period 1995-2000. Also the results that obtained from applying constrained energy minimization were more accurate than other method comparing with the real situation.
This paper deals with finite element modeling of the ultimate load behavior of double skin composite (DSC) slabs. In a DSC slab, shear connectors in the form of nut bolt technique studs are used to transfer shear between the outer skin made of steel plates and the concrete core. The current study is based on finite element analysis using ANSYS Version 11 APDL release computer program. Experimental programmes were carried out by the others, two simply supported DSC beams were tested until failure under a concentrated load applied at the center. These test specimens were analyzed by the finite element method and the analyses have shown that these slabs displayed a high degree of flexural characteristics, ultimate strength,
... Show More