This work involved the successful synthesis of three new Schiff base complexes, including Ni(II), Mn(II), and Cu(II) complexes. The Schiff base ligand was created by reacting the malonyldihydrazide molecule with naphthaldehyde, and the final step involved reacting the ligand with the corresponding metallic chloride yielding pure target complexes. FTIR, 1 H NMR, 13 C NMR, mass, and UV/Vis spectroscopies were used to comprehensively characterize the produced complexes. These substances have been employed in this study to photo-stabilize polystyrene (PS) and lessen the photo-degradation of its polymeric chains. Several methods, including FTIR, weight loss, viscosity average molecular weight, light and atomic force microscopy, and energy dispersive X-ray (EDX) mapping, were used to assess the effectiveness of produced complexes as photo-stabilizers. These experiments supported one another and showed how well novel complexes stabilize PS photos. Hence, after 300 h of exposure to UV light with a wavelength of 313 nm, they lessen the photo-degradation of PS films containing these complexes compared to blank PS. Also, it has shown that the copper(II) complex works well as a photo-stabilizer. This is due to the highly conjugated systems in these compounds. The findings of this study have significant implications for reducing PS usage globally, which poses a serious danger to the environment, particularly the marine eco-system as a result of plastic trash.
This study includes synthesis of some nitrogenous heterocyclic compounds linked to amino acid esters or heterocyclic amines that may have a potential activity as antimicrobial and/or cytotoxic. Quinolines are an important group of organic compounds that possess useful biological activity as antibacterial, antifungal and antitumor .8-Hydroxyquinoline (8-HQ) and numerous of its derivatives exhibit potent activities against fungi and bacteria which make them good candidates for the treatment of many parasitic and microbial infection diseases.
These pharmacological properties of quinolones aroused our interest in synthesizing several new compounds featuring heterocyclic rings of the quinoline derivatives linke
... Show MoreHorizontal wells are of great interest to the petroleum industry today because they provide an attractive means for improving both production rate and recovery efficiency. The great improvements in drilling technology make it possible to drill horizontal wells with complex trajectories and extended for significant depths.
The aim of this paper is to present the design aspects of horizontal well. Well design aspects include selection of bit and casing sizes, detection of setting depths and drilling fluid density, casing, hydraulics, well profile, and construction of drillstring simulator. An Iraqi oil field (Ajeel field) is selected for designing horizontal well to increase the productivity. Short radius horizontal well is suggested fo
In this work, a step-index fiber with core index and cladding index has been designed. Single-mode operation can be obtained by using a fiber with core diameters 4–13 µm operating at a wavelength of 1.31 µm and by 4–15 µm at 1.55 µm. The fundamental fiber mode properties such as phase constant, effective refractive index, mode radius, effective mode area and the power in the core were calculated. Distributions of the intensity and the amplitude were shown.
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreIn this research , design and study a (beam expander) for the Nd – YAG laser with (1.06 ?m) Wavelength has been studied at 5X zoom with narrow diversion in the room temperature. by using (ZEMAX) to study the system. Evaluate its performance via (ZEMAX) outputs, as bright Spot Diagram via (RMS), Ray Fan Plot, Geometric Encircled Energy and the value of Focal shift. Then study the effect of field of view on the outputs in the room temperature.
A recently reported Nile red (NR) dye conjugated with benzothiadiazole species paves the way for the development of novel organic-based sensitizers used in solar cells whose structures are susceptible to modifications. Thus, six novel NR structures were derived from two previously developed structures in laboratories. In this study, density functional theory (DFT) calculations and time-dependent DFT (TD-DFT) were used to determine the optoelectronic properties of the NR-derived moieties such as absorption spectra. Various linkers were investigated in an attempt to understand the impact of π-linkers on the optoelectronic properties. According to the findings, the presence of furan species led to the planarity of the molecule and a reduction
... Show MoreThe Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show More