The article deals with the role of metaphors in forming the plot of L. Ulitskaya’s family chronicle “Medea and Her Children”. The author of the article describes the results of the next stage of research related to the works of Lyudmila Evgenievna Ulitskaya, a representative of modern Russian prose. The analysis of tropes and figures in the works written at the turn of the XXth – XXIth centuries is of importance for the study of the modern state of Russian language as an independent system. “Medea and Her Children” is one of the works by L. Ulitskaya (written in 1996), which, like her other works, is characterized by a unique style of narration, rich in vocabulary, lexical, semantic and stylistic diversity of the author’s word, which is a response to the features of mentality of the described period in general and determines the relevance of the research. Scientific novelty of the material is presented as one part of the general study of the role of metaphors in the texts of L. Ulitskaya’s works and consists in the fact that the study of the role of metaphors used by the author to form the plot of the family chronicle through the prism of relationships and characteristics of the characters is conducted on the material of the novel “Medea and Her Children”. The main purpose of the article is to consider the metaphors with which the author forms the general plot line of the work by reflecting the relationship of Medea, the keeper of secrets and ideological foundations of the family clan, with other characters and their features. Over the course of the research the author examined the metaphors forming the general plot line of the family chronicle “Medea and Her Children”, inseparably connected with the image of Medea as the fundamental element and the voice of the author’s position in the complex of the general line of the characters of the work, and allocated into groups and subgroups according to the relationship with the main character of people of the family clan Sinopley and their close environment.
This study describes the preparation of a new bidentate Schiff base derived from the condensation of Isatin-3-hydrazone with 2-acetylthiophene and the preparation of new series of complexes with a good yield. The prepared ligand was characterized by IR, UV-Vis, C.H.N.S elemental analysis, 1H and 13C NMR, LC-Mass spectroscopy, and physical measurements. Its complexes were analyzed by C.H.N.S elemental analyses, UV-Vis., FTIR, NMR, LC-Mass Spectra, atomic absorption spectroscopy, magnetic susceptibility, and conductivity measurements The results from spectroscopy and measurement studies showed that the ligand coordinated to the metal ion as a bidentate ligand via oxygen and nitrogen, forming an octahedral geometry around it. In vitro antimicr
... Show MorePure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra
For the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe e
Series of new complexes of the type [M2 (L)Cl4 ] are prepared from the new ligand[N1 ,N4 -bis(benzo[d]thiazol-2- yl)succinamide (L) derived from ethan-1,2-dicarbonyl chloride and 2-aminobenzothiozole,where, M= Ni(ii), Cu(ii) and Zn(ii) alsocomplexes of mix-ligands, the type [M(L)(8-HQ)]Cl, where, M = Ni(ii), Cu(ii) and Zn(ii),8-HQ= 8-Hydroxyquinoline. Chemical forms are obtained from their 1 H, 13CNMR, Mass spectra (for (L)), FT-IR and U.V spectrum, melting point, molar conduct.Using flame (AA), % M is determined in the complexes.The content of C, H, N and S in the (L) and its complexes was specified. Magnetic susceptibility and thermal analysis (TGA) of prepared compounds were measured.The propose geometry for all complexes[M2 (L)Cl4 ] wa
... Show MoreTwo quantitative, environment-friendly and easily monitored assays for Ni (II) and Co (III) ions analysis in different lipstick samples collected from 500-Iraqi dinars stores located in Baghdad were introduced. The study was based on the reaction of nickel (II) ions with dimethylglyoxime (DMG) reagent and the reaction of cobalt (III) ions with 1-nitroso-2-naphthol (NN) reagent to produce colored products. The color change was measured by spectrophotometric method at 565 nm and 430 nm for Ni and Co, respectively, with linear calibration graphs in the concentration range 0.25-100 mg L-1 (Ni) and 0.5-100 mg L-1 (Co) and LOD and LOQ of 0.11 mg L-1 and 0.36 mg L-1 (Ni), and 0.15 mg L-1 an
... Show MoreThe biosorption of lead (II) and chromium (III) onto dead anaerobic biomass (DAB) in single and binary systems has been studied using fixed bed adsorber. A general rate multi- component model (GRM) has been utilized to predict the fixed bed breakthrough curves for single and dual- component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm (Langmuir model). The effects of important parameters, such as flow rate, initial concentration and bed height on the behavior of breakthrough curves have been studied. The equilibrium isotherm model parameters such as maximum uptake capacities for lead (II) and chromium (III) were found to be 35.12 and
... Show MorePurpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show More