The cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area of 248.84 m2/g and a pore volume of 0.141 cm3/g. DFZCC was used in the sorption process of Zn2+ ions from aqueous solutions, and it achieved higher removal (98%) at normal pH of 6.4 and temperature of 40°C. The Langmuir model was the best model for representing equilibrium data with a maximum sorption capacity of 6.711 mg/g. The kinetic studies showed that the pseudo‐second‐order model was the most appropriate model for representing experimental data. The intra‐particle diffusion kinetics demonstrated that the boundary film is the rate‐determining step in the sorption process. The sorption process of Zn2+ ions by DFZCC was spontaneous and endothermic. Moreover, solidification of the spent DFZCC by kaolin successfully reduced the leaching ions to the solution after 12 weeks from exposure to a salty solution.
The novel heterocyclic organozinc compounds were prepared from the reaction of diazonum salt cytosine zinc chloride with thymol and vanilin as coupler components. The prepared compounds were characterized by elemental analysis and UV-Vis, FTIR and 1HMNR spectroscopic techniques. The biological activity was also studied for all prepared compounds.
In this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both
... Show MoreThe adsorption behavior of congo red dye from its aqueous solutions was investigated onto natural and modified bauxite clays. Both bauxite and modified bauxite are primarily characterized by using, FTIR, SEM, AFM, and XRD. Several variables are studied as a function of adsorption including contact time, adsorbent weight, pH, ionic strength, particle size and temperature under batch adsorption technique. The absorbance of the solution before and after adsorption was measured spectrophotometrically. The equilibrium data fit with Langmuir model of adsorption and the linear regression coefficient R2 is found to be 0.9832 and 0.9630 for natural and modified bauxite respectively at 37.5°C which elucidate the best fitting isotherm model. The gene
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreIraqi grapefruit ( Citrus paradisi, family Rutaceae) flavonoids were investigated qualitatively and quantitatively. The total isolated flavonoids from seeds and peel were 3.6 mg and 12.53 mg respectively in each gram of powder. The antimicrobial activity of aqueous extracts and total isolated flavonoids from seeds and peel were assessed against strains of Gram positive bacteria( Staphylococcus aureus, Staphylococcus epidermidis), Gram negative bacteria( Escherichia coli, Pseudomonas aeruginosa) and yeast( Candida albicans). The aqueous extracts lacked antimicrobial activity against all bacteria and yeast, while the total flavonoids showed a moderate inhibitory effect against test bacteria and yeast. This difference in inhibitory activity
... Show More