The cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area of 248.84 m2/g and a pore volume of 0.141 cm3/g. DFZCC was used in the sorption process of Zn2+ ions from aqueous solutions, and it achieved higher removal (98%) at normal pH of 6.4 and temperature of 40°C. The Langmuir model was the best model for representing equilibrium data with a maximum sorption capacity of 6.711 mg/g. The kinetic studies showed that the pseudo‐second‐order model was the most appropriate model for representing experimental data. The intra‐particle diffusion kinetics demonstrated that the boundary film is the rate‐determining step in the sorption process. The sorption process of Zn2+ ions by DFZCC was spontaneous and endothermic. Moreover, solidification of the spent DFZCC by kaolin successfully reduced the leaching ions to the solution after 12 weeks from exposure to a salty solution.
In this work, prepared new ligand[3- (1H-indol-3-yl) -2- (3-(4- methoxybenzoyl)thiouereido) propanoic acid](MTP) has been synthesized by reaction of 4-Methoxybenzoyl isothiocyanate with tryptophane(1:1), The ligand was characterized by elemental microanalysis C.H.N.S, FT-IR, UV-Vis and 1H,13C NMR spectra, Some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(MTP)2] (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg), the proposed geometrical structure for all complexes were tetrahedral except copper complex has a square planer geometry around metallic ion
... Show More Measurement of stability constant of some complexes formed by (6-(2-amino-2-(4hydroxy phenyl)-acetamido)-3,3-dimethyl-7-oxo-4-thia-1-aza-bicyclo[3,2,0] heptanes-2carboxylic acid (Amoxicillin) with (Cr+3, Co+2, Ni+2, Cu+2,Ag+1, and Cd+2) ions, have been performed(Amoxicillin) was found to behave as bidentate ligand with ahardness parameter(α)of (0.46)and asoftness parameter(β)of (1.03) while complexes being formed were of (1:1)ratio.
Pulsed liquid laser ablation is considered a green method for the synthesis of nanostructures because there are no byproducts formed after the ablation. In this paper, a fiber laser of wavelength 1.064 µm, peak power of 1 mJ, pulse duration of 120 ns, and repetition rate of 20 kHz, was used to produce carbon nanostructures including carbon nanospheres and carbon nanorods from the ablation of asphalt in ethanol at ablation speeds of (100, 75, 50, 10 mm/s). The morphology, composition and optical properties of the synthesized samples were studied experimentally using FESEM, HRTEM, EDS, and UV-vis spectrophotometer. Results showed that the band gap energy decreased with decreasing the ablation speed (increasing the ablation time), the mi
... Show MoreIn this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show MoreTwo new halogenated azo-Schiff ligands were prepared in two steps. The first step included a condensation between 4-amino acetophenone and 2-fluoro-4-bromo aniline to give the corresponding Schiff base. In the second step, the diazonium salt of this Schiff base reacted with 2-naphthol and 4,5-diphenylimidazole to form two new azo-Schiff base derivatives as ligands; (3-((E)-(4-((E)-1-((4-bromo-2-fluorophenyl) imino)ethyl) phenyl) diazenyl) naphthalen-2-ol (HSBAN) (L1) and ((E)-N-(4-bromo-2-fluorophenyl)-1-(4-((E)-(4,5-diphenyl-1H-imidazol-2-yl)diazenyl) phenyl) ethan-1-imine) (HSBAI) (L2), respectively. These new ligands were characterized by mass spectrometry, FT-IR, 1H NMR, UV-Visible spectroscopy and elemental microanalysi
... Show MoreObjective: The objective of the present study was to design and optimize oral fast dissolving film (OFDF) of practically insoluble drug lafutidine in order to enhance bioavailability and patient compliance especially for a geriatric and unconscious patient who are suffering from difficulty in swallowing.Methods: The films were prepared by a solvent casting method using low-grade hydroxyl propyl methyl cellulose (HPMC E5), polyvinyl alcohol (PVA), and sodium carboxymethyl cellulose (SCMC) as film forming polymers. Polyethylene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer to enhance the film forming properties of the polymer. Tween 80 (1% solution) and poloxamer407 were used as a surfactant, citri
... Show MoreThe new bidentate Schiff base ligand namely [(E)-N1-(4-methoxy benzylidene) benzene-1, 2-diamine] was prepared from condensation of 4-Methoxy benzaldehyde with O-Phenylene diamine at 1:1 molar ratio in ethanol as a solvent in presence of drops of 48% HBr. The structure of ligand (L) was characterized by, FT-IR, U.V-Vis., 1H-, 13C- NMR spectrophotometer, melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (L) in general molecular formula [M(L)3], where M= Mn(II), Co(II), Ni(II),Cu(II) and Hg(II); L=(C14H14N2O) in ratio (1:3)(Metal:Ligand) were synthesized and characterized by Atomic absorption, FT- IR, U.V-Vis. spectra, molar conductivity, chloride content, melting point and magnetic susceptibility from the above d
... Show More