A new features extraction approach is presented based on mathematical form the modify soil ratio (MSR) and skewness for numerous environmental studies. This approach is involved the investigate on the separation of features using frequency band combination by ratio to estimate the quantity of these features, and it is exhibited a particular aspect to determine the shape of features according to the position of brightness values in a digital scenes, especially when the utilizing the skewness. In this research, the marginal probability density function G(MSR) derivation for the MSR index is corrected, that mentioned in several sources including the source (Aim et al.). This index can be used on original input features space for three diffe
... Show MoreThe present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.
Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreFractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit
... Show MoreTwo molecular imprinted polymer (MIP) membranes for Levofloxacin (LEV) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of styrene (STY) as monomer, N,N methylene di acrylamide as a cross linker ,benzoyl peroxide (BPO) as an initiator and levofloxacin as a template. Di methyl adepate (DMA) and acetophenone (AOPH) were used as plasticizers , the molecular imprinted membranes and the non molecular imprinted membranes were prepared. The slopes and detection limits of the liquid electrodes ranged from -21.96 – -19.38 mV/decade and 2×10-4M- 4×10-4M, and Its response time was around 1 minute, respectively. The liquid electrodes were packed with 0.1 M standar
... Show MoreIn this paper, a literature survey was introduced to study of enhancing the hazy images , because most of the images captured in outdoor images have low contrast, color distortion, and limited visual because the weather conditions such as haze and that leads to decrease the quality of images capture. This study is of great importance in many applications such as surveillance, detection, remote sensing, aerial image, recognition, radar, etc. The published researches on haze removal are divided into several divisions, some of which depend on enhancement the image, some of which depend on the physical model of deformation, and some of them depend on the number of images used and are divided into single-image and multiple images dehazing model
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More