In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was elaborated by measuring the amplitude of displacement by the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside the soil using piezoelectric sensors as well as measuring the excess pore water pressure using pore water pressure transducers. It was concluded that the maximum displacement amplitude response of the foundation resting on dry sand models is more than that on the saturated sand by about 5.0–10%. The maximum displacement amplitude of footing is reduced to half when the size of footing is doubled for dry and saturated sand. The final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it is reduced with increasing the relative density of sand, modulus of elasticity, and embedding inside soils. The excess pore water pressure increases with increasing the relative density of the sand, the amplitude of dynamic loading and the operating frequency. In contrast, the rate of dissipation of the excess pore water pressure during dynamic loading is more in the case of loose sand.
The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, i
... Show MoreThe present study aims to present a proposed realistic and comprehensive cyber strategy for the Communications Directorate for the next five years (2022-2026) based on the extent of application and documentation of cybersecurity measures in the Directorate and the scientific bases formulating the strategy. The present study is significant in that it provides an accurate diagnosis of the capabilities of the cyber directorate in terms of strengths and weaknesses in its internal environment and the opportunities and threats that surround it in the external environment, based on the results of the assessment of the reality of cybersecurity according to the global Cybersecurity index, which provides a strong basis for building its strategic dire
... Show MoreA reliability system of the multi-component stress-strength model R(s,k) will be considered in the present paper ,when the stress and strength are independent and non-identically distribution have the Exponentiated Family Distribution(FED) with the unknown shape parameter α and known scale parameter λ equal to two and parameter θ equal to three. Different estimation methods of R(s,k) were introduced corresponding to Maximum likelihood and Shrinkage estimators. Comparisons among the suggested estimators were prepared depending on simulation established on mean squared error (MSE) criteria.
Internal control is system,defined and implemented under its responsibility , which aims to ensure that; laws and regulations are complied with; the instructions and directional guidelines fixed by Executive Management or the Management Borad are applied; the company internal processes are functioning correctlly , particularly those implicating the security of its assets; Financial Information is reliable; and generally contributes to the control over its activities , to the efficiency of its operation and to the efficient utilisation of its Resources. By helping to anticipate and control the risks involved in not meeting the objectives the company has set for itself, the internal control system plays akey role in conducting & monito
... Show MoreTh r:ats for the photo induced eleytr-on tra;nsfer reactions in the
Methylen-e blue 'l'vffi+ ·dye· with benzo_phenone (ABP) ketone in variety
solvc;:nts al n:loin tempemtme ha;ve qn calculated . Electron trans_ fer
-rates are large in• }stt:on;gly--'{:'lolaf- solvent and week in-l s.s :polar solvent.
the high values o:E t±te r.tes a_f electro-n tr;ans-fer indicate that tite dye
triplet i$ mqre, r activ.e toWard ABP ket-one.
In this research, the Boiti–Leon–Pempinelli (BLP) system was used to understand the physical meaning of exact and solitary traveling wave solutions. To establish modern exact results, considered. In addition, the results obtained were compared with those obtained by using other existing methods, such as the standard hyperbolic tanh function method, and the stability analysis for the results was discussed.
Abstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreTwo samples of (Ag NPs-zeolite) nanocomposite thin films have been prepared by easy hydrothermal method for 4 hours and 8 hours inside the hydrothermal autoclave at temperatures of 100°C. The two samples were used in a photoelectrochemical cell as a photocatalyst inside a cell consisting of three electrodes: the working electrode photoanode (AgNPs-zeolite), platinum as a cathode electrode, and Ag/AgCl as a reference electrode, to study the performance of AgNPs-zeolite under dark current and 473 nm laser light for water splitting. The results show the high performance of an eight-hour sample with high crystallinity compared with a four-hour sample as a reliable photocatalyst to generate hydrogen for renewable energies.