In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was elaborated by measuring the amplitude of displacement by the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside the soil using piezoelectric sensors as well as measuring the excess pore water pressure using pore water pressure transducers. It was concluded that the maximum displacement amplitude response of the foundation resting on dry sand models is more than that on the saturated sand by about 5.0–10%. The maximum displacement amplitude of footing is reduced to half when the size of footing is doubled for dry and saturated sand. The final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it is reduced with increasing the relative density of sand, modulus of elasticity, and embedding inside soils. The excess pore water pressure increases with increasing the relative density of the sand, the amplitude of dynamic loading and the operating frequency. In contrast, the rate of dissipation of the excess pore water pressure during dynamic loading is more in the case of loose sand.
In this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.
This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
Background: Tumor necrosis factor-alpha (TNF-α) and interleukins play important roles in the pathogenesis of rheumatoid arthritis (RA). Genetic research has been employed to find many of the missing connections between genetic risk variations and causal genetic components. Objective: The goal of this study is to look at the genetic variations of TNF-α and interleukins in Iraqi RA patients and see how they relate to disease severity or response to biological therapy. Method: Using specific keywords, the authors conducted a systematic and comprehensive search to identify relevant Iraqi studies examining the genetic variations of TNF-α and interleukins in Iraqi RA patients and how they relate to disease severity or response to biolo
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show MoreNew microphotometer was constructed in our Laboratory Which deals with the determination of Molybdenum (VI) through its Catalysis effect on Hydrogen peroxide and potasum iodide Reaction in acid medium H2SO4 0.01 mM. Linearity of 97.3% for the range 5- 100 ppm. The repeatability of result was better than 0.8 % 0.5 ppm was obtanined as L.U. (The method applied for the determination of Molybdenum (VI) in medicinal Sample (centrum). The determination was compared well with the developed method the conventional method.
Fear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is carried out using MATLAB and Mathematica. It is discovered that the
... Show MoreAbstract:
Under the state scenario, fiscal policy will not be able to use the oil surpluses optimally and economically and society, as long as these surpluses are not directed by public expenditure towards new productive investments and by following the path of fiscal policy after one year 2003 and until 2013 we note that it is based on the method of spending (excessive) consumption, and did not take any action towards the budget deficit planned at the beginning of the fiscal year, and the actual surplus at the end of the fiscal year, which represents the highest expenditure in the budget, Salaries and wages of workers in various government agencies with the expansion of spending on the security side.&n
... Show More