In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the methods has been presented. In addition, the maximum error remainder () has been computed to demonstrate the accuracy of the proposed methods. The results persuasively prove that CM and D-CMs are reliable and accurate in obtaining the approximate solutions to the problems, with obvious superiority in accuracy for D-CMs than for CM.
This study deals with examining UCAS students’ attitudes in Gaza towards learning Arabic grammar online during the Corona pandemic. The researcher has adopted a descriptive approach and used a questionnaire as a tool for data collection. The results of the study have statistically shown significant differences at the level of "0.01" between the average scores of students in favor of the students of the humanities specializations. It has also been found that the students’ attitudes at the Department of Humanities and Media towards learning Arabic grammar online are positive. Additionally, the results revealed no statistical significant differences due to the variable of UCAS students’ scientific qualifications. The results stressed
... Show MoreIn this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions.
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
In this paper, we deal with the problem of general matching of two images one of them has experienced geometrical transformations, to find the correspondence between two images. We develop the invariant moments for traditional techniques (moments of inertia) with new approach to enhance the performance for these methods. We test various projections directional moments, to extract the difference between Block Distance Moment (BDM) and evaluate their reliability. Three adaptive strategies are shown for projections directional moments, that are raster (vertical and horizontal) projection, Fan-Bean projection and new projection procedure that is the square projection method. Our paper started with the description of a new algorithm that is low
... Show MoreResearchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson
... Show MoreIn this study, the turbulent buoyancy driven fluid flow and heat transfer in a differentially heated rectangular enclosure filled with water is quantified numerically. The two dimensional governing differential equations are discretized using the finite volume method. SIMPLE algorithm is employed to obtain stabilized solution for high Rayleigh numbers by a computational code written in FORTRAN language. A parametric study is undertaken and the effect of Rayleigh numbers (1010 to 1014), the aspect ratio (30, 40 and 50), and the tilt angle (10o to 170o ) on fluid flow and heat transfer are investigated. The results of the adopted model in the present work is compared with previously published results and a qualitative agreement and a good
... Show MoreNumerical simulation of charge density produced in plasma actuators is dependent upon the development of models dealing with electrical properties. The main aim of this work is to investigate the characteristics surface charge density and space charge density of DBD plasma actuator. A simple design of surface dielectric barrier discharge plasma actuator is used in the study. The discharge gas was N2:H2 mixture with applied voltage equal to 1.5 kV. A theoretical plasma model is used to establish the charge density details. Results show that surface charge density increased in value and spread in width alone the exposed electrode as the voltage increased and reached to the amplitude value.
The study is dealing with an application reengineering process clean solar cells in the Ministry of electricity, as aimed at the possibility of the applicability and impact of re-engineering to achieve the level of performance of the Ministry's operations, with the application of the cleaning process solar cells, developed, improved and found a correlation, statistically significant effect between variable re-engineering and performance as well as the application of process reengineering clean solar cells:1- Before the re-engineering process the total time for cleaning up and solar cell 20 minutes and number of columns performed per day 24 columns and total columns750 which were completed per month that re
... Show More