The Sonic Scanner is a multifunctional instrument designed to log wells, assess elastic characteristics, and support reservoir characterisation. Furthermore, it facilitates comprehension of rock mechanics, gas detection, and well positioning, while also furnishing data for geomechanical computations and sand management. The present work involved the application of the Sonic Scanner for both basic and advanced processing of oil-well-penetrating carbonate media. The study aimed to characterize the compressional, shear, Stoneley slowness, rock mechanical properties, and Shear anisotropy analysis of the formation. Except for intervals where significant washouts are encountered, the data quality of the Monopole, Dipole, and Stoneley modes is generally good in the open-hole sections. The vertical resolution of reliable Compressional, Shear, and Stoneley values is enhanced by the application of Receiver Multi-shot processing. The analysis of rock mechanical properties, including formation Poisson's ratio, compressional-to-shear velocity ratio, Bulk Modulus, Shear Modulus, and Young's modulus, directly utilised the outputs of compressional and shear slowness data. Acoustic processing and interpretation can make further use of the extracted slowness. Anisotropy analysis of Sonic Scanner data in the well under investigation showed that the formation was mostly isotropic throughout most of the recorded interval. Stress-induced and fracture-induced anisotropy has been detected in a limited number of locations. The maximum horizontal stress extends in a direction ranging from NE 20-80 degrees.
In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.
Data compression offers an attractive approach to reducing communication costs using available bandwidth effectively. It makes sense to pursue research on developing algorithms that can most effectively use available network. It is also important to consider the security aspect of the data being transmitted is vulnerable to attacks. The basic aim of this work is to develop a module for combining the operation of compression and encryption on the same set of data to perform these two operations simultaneously. This is achieved through embedding encryption into compression algorithms since both cryptographic ciphers and entropy coders bear certain resemblance in the sense of secrecy. First in the secure compression module, the given text is p
... Show MoreData security is an important component of data communication and transmission systems. Its main role is to keep sensitive information safe and integrated from the sender to the receiver. The proposed system aims to secure text messages through two security principles encryption and steganography. The system produced a novel method for encryption using graph theory properties; it formed a graph from a password to generate an encryption key as a weight matrix of that graph and invested the Least Significant Bit (LSB) method for hiding the encrypted message in a colored image within a green component. Practical experiments of (perceptibility, capacity, and robustness) were calculated using similarity measures like PSNR, MSE, and
... Show MoreAbstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b
... Show MoreIn this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives have been prepared by condensation of thiosemicarbazide and different substituted aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6), these compounds have characterized by its physical properties and spectroscopic methods. This work also included theoretical study to prove the ability of these compounds as corrosion inhibitors; The program package of Gaussian 09W with its graphical user interface GaussView 5.0 had used for this purpose; the methods of Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of B3LYP and semiempirical method of PM3 have been used, the study included theoretical simulation
... Show MoreThe effect of heat treatment on the optical properties of the bulk heterojunction blend nickel (II) phthalocyanine tetrasulfonic acid tetrasodium salt and Tris (8-hydroxyquinolinato) Aluminum (NiPcTs/Alq3) thin films which prepared by spin coating was described in this study. The films coated on a glass substrate with speed of 1500 rpm for 1.5 min and treated with different annealing temperature (373, 423 and 473) K. The samples characterized using UV-Vis, X ray diffraction and Fourier transform Infrared (FTIR) spectra, XRD patterns indicated the presence of amorphous and polycrystalline blend (NiPcTs/Alq3). The results of UV visible shows that the band gap increase with increasing the annealing temperature up to 373 K and decreases with
... Show More
Buildings such as malls, offices, airports and hospitals nowadays have become very complicated which increases the need for a solution that helps people to find their locations in these buildings. GPS or cell signals are commonly used for positioning in an outdoor environment and are not accurate in indoor environment. Smartphones are becoming a common presence in our daily life, also the existing infrastructure, the Wi-Fi access points, which is commonly available in most buildings, has motivated this work to build hybrid mechanism that combines the APs fingerprint together with smartphone barometer sensor readings, to accurately determine the user position inside building floor relative to well-known lan
... Show MoreApplications of remote sensing are important in improving potato production through the broader adoption of precision agriculture. This technology could be useful in decreasing the potential contamination of soil and water due to the over-fertilization of agriculture crops. The objective of this study was to assess the utility of active sensors (Crop Circle™, Holland Scientific, Inc., Lincoln, NE, USA and GreenSeeker™, Trimble Navigation Limited, Sunnyvale, CA, USA) and passive sensors (multispectral imaging with Unmanned Arial Vehicles (UAVs)) to predict total potato yield and phosphorus (P) uptake. The experimental design was a randomized complete block with four replications and six P treatments, ranging from 0 to 280 kg P ha−1, as
... Show MoreThis research is an attempt to explore a social and pragmatic phenomenon of lamentation in elegies of Gray and AL-Khansaa' who represent two different cultures. It illustrates the intended meaning of lamentation in English and Arabic and finds how the two languages express this purpose of poetry by analysing it socio-pragmatically adopting Searle's models (1969),and its modifications. Lamentation is considered as a mournful poem lamenting the death of whole humanity as Gray's elegy and of an individual as AL-Khansaa's elegy. So, Gray portrays a universal picture concerning his lamentation, while AL-Khansaa' portrays an individual and subjective picture regarding her lamentation. As branches of linguistics, sociolinguistics de
... Show MoreIn this paper, the Monte Carlo N-Particle extended computer code (MCNP) were used to design a model of the European Sodium-cooled Fast Reactor. The multiplication factor, conversion factor, delayed neutrons fraction, doppler constant, control rod worth, sodium void worth, masses for major heavy nuclei, radial and axial power distribution at high burnup are studied. The results show that the reactor breeds fissile isotopes with a conversion ratio of 0.994 at fuel burnup 70 (GWd/T), and minor actinides are buildup inside the reactor core. The study aims to check the efficiency of the model on the calculation of the neutronic parameters of the core at high burnup.