Pore pressure means the pressure of the fluid filling the pore space of formations. When pore pressure is higher than hydrostatic pressure, it is named abnormal pore pressure or overpressure. When abnormal pressure occurred leads to many severe problems such as well kick, blowout during the drilling, then, prediction of this pressure is crucially essential to reduce cost and to avoid drilling problems that happened during drilling when this pressure occurred. The purpose of this paper is the determination of pore pressure in all layers, including the three formations (Yamama, Suliay, and Gotnia) in a deep exploration oil well in West Qurna field specifically well no. WQ-15 in the south of Iraq. In this study, a new appro
... Show MoreThe primary aim of this study was to identify the effect of using the simultaneous electronic presentations strategy in teaching basic skills of basketball to second-grade intermediate students. The present study had a parallel group, pre-post experimental design. In the present study the students of the Salah al-Din Intermediate School for the academic year 2020-2021 constituted the research community. A total of 75 students were present in the research community. Out of 75 students 16 students were selected as the participants for the study. The students falling within the age group of 13-14 years were recruited as the study participants, making up a percentage of 21.33 of the total number. Based on the results of th
... Show MoreIn this research the Empirical Bayes method is used to Estimate the affiliation parameter in the clinical trials and then we compare this with the Moment Estimates for this parameter using Monte Carlo stimulation , we assumed that the distribution of the observation is binomial distribution while the distribution with the unknown random parameters is beta distribution ,finally we conclude that the Empirical bayes method for the random affiliation parameter is efficient using Mean Squares Error (MSE) and for different Sample size .
The objective of this research is employ the special cases of function trapezoid in the composition of fuzzy sets to make decision within the framework of the theory of games traditional to determine the best strategy for the mobile phone networks in the province of Baghdad and Basra, has been the adoption of different periods of the functions belonging to see the change happening in the matrix matches and the impact that the strategies and decision-making available to each player and the impact on societ
... Show MoreThe impact of COVID-19 pandemic on education models was mainly through the expansion of technology use in the different educational programs. Earlier impact of COVID-19 was manifested in the complete and sudden transition to distance education regardless of institution preparedness status. Gradually, many institutions are moving back to on-campus face-to-face education. However, others including all higher education institutions in Iraq are adopting the hybrid education model. This report presents part of the end of semester evaluation survey conducted at the University of Baghdad College of Pharmacy for the Spring 2021 semester. The survey aims to address points of strength and weakness associated with the hybrid education model and spe
... Show MoreIn this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreHierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show More