The Zubair reservoir in the Abu-Amood field is considered a shaly sand reservoir in the south of Iraq. The geological model is created for identifying the facies, distributing the petrophysical properties and estimating the volume of hydrocarbon in place. When the data processing by Interactive Petrophysics (IP) software is completed and estimated the permeability reservoir by using the hydraulic unit method then, three main steps are applied to build the geological model, begins with creating a structural, facies and property models. five zones the reservoirs were divided (three reservoir units and two cap rocks) depending on the variation of petrophysical properties (porosity and permeability) that results from IP software interpr
... Show MoreBuilding a geological model is an essential and primary step for studying the reservoir’s hydrocarbon content and future performance. A three-dimensional geological model of the Asmari reservoir in Abu- Ghirab oil field including structure, stratigraphy, and reservoir petrophysical properties, has been constructed in the present work. As to underlying Formations, striking slip faults developed at the flank and interlayer normal. Abu Ghirab oilfields are located on the eastern anticlinal band, which has steadily plunged southward. 3D seismic interpretation results are utilized to build the fault model for 43 faults of the Asmari Formation in Abu Ghirab Oilfield. A geographic facies model with six different rock facies types
... Show MoreThis study dealt with the management strategy as an independent variable and the integrated industrial distribution as a variable. The study aimed at finding the integrated industrial distribution that fits with the management strategy in providing the needs of the firm on the one hand and reducing the cost of management that is reflected in increasing its profits.
The researcher selected the data from (130) decision makers in the corporation and used the questionnaire as a tool for collecting data and used a set of statistical tools and tools suitable for the nature of information and were processed using the data analysis system (SPSS version 24) Based on the analysis of the responses of the sample and the test of correlation and
Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
The purpose of this study is to examine the dimensions of strategic intent (SI; see Appendix 1) according to the Hamel and Prahalad model as a building for the future, relying on today’s knowledge-based and proactive strategic directions of management as long-term and deep-perspective creative directions, objective vision and rational analysis, integrative in work, survival structure and comprehensiveness in perception.
The quantitative approach was used based on research, detection and proof, as data were collected from leader
The gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
Empirical equation has been presented to predict the optimum hydrodynamic
pressure gradient with optimum mud flow rate (one equation) of five Iraqi oil wells
to obtain the optimum carrying capacity of the drilling fluid ( optimum transport
cuttings from the hole to the surface through the annulus).
This equation is a function of mud flow rate, mud density and penetration
rate without using any charts or graphs.
The correlation coefficient accuracy is more than 0.9999.
Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pres
... Show More