Preferred Language
Articles
/
FBaiDIcBVTCNdQwCrTPu
A Comparison between Static and Repeated Load Test to Predict Asphalt Concrete Rut Depth
...Show More Authors

Rutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperature played a major role. The power-law model was used to describe the relationship between the accumulated permanent strain and the number of load repetitions. Furthermore, graphical analysis was performed using VESYS 5W to predict the rut depth for the asphalt concrete layer. The α and µ parameters affected the predicted rut depth significantly. The results show a substantial difference between the two tests, indicating that the repeated load test is more adequate, useful, and accurate when compared with the static load test for the evaluation of the rut depth.

Crossref
View Publication
Publication Date
Sat Dec 01 2018
Journal Name
Proceedings Of International Structural Engineering And Construction
ON THE REDUCTION OF PRESTRESSING FORCE NEAR SUPPORTS IN PARTIALLY PRESTRESSED CONCRETE FLEXURAL MEMBERS
...Show More Authors

Straight tendons in pretensioned members can cause high-tensile stresses in the concrete extreme fibers at end sections because of the absence of the bending stresses due to self-weight and superimposed loads and the dominance of the moment due to prestressing force alone. Accordingly, the concrete tensile stresses at the ends of a member prestressed with straight tendons may limit the service load capacity of the member. It is therefore important to establish limiting zone in the concrete section within which the prestressing force can be applied without causing tension in the extreme concrete fibers. Two practical methods are available to reduce the stresses at the end sections due to the prestressing force. The first method based

... Show More
View Publication
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
13th International Symposium On Fiber-reinforced Polymer Reinforcement For Concrete Structures Frprcs 13
CFRP Repairing System at Openings in Reinforced Concrete T-Beams Cracked by Impact Loads
...Show More Authors

Publication Date
Fri Nov 02 2018
Journal Name
Aci Special Publication
CFRP Repairing System at Openings in Reinforced Concrete T-Beams Cracked by Impact Loads
...Show More Authors

View Publication
Publication Date
Wed Jun 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrochemical Behavior of Phosphotized Reinforcing Steel in Concrete in Presence of Sugar Can Ash
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Non-Destructive Testing of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS)  has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity  electrical resistivity and lesser absorption than fiber reinforced

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Computers And Concrete
Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper
...Show More Authors

Scopus (12)
Scopus
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Some Mechanical Properties of Concrete by using Manufactured Blended Cement with Grinded Local Rocks
...Show More Authors

The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Behavioral Investigation of Reinforced Concrete T-Beams with Distributed Reinforcement in the Tension Flange
...Show More Authors

Current design codes and specifications allow for part of the bonded flexure tension reinforcement to be distributed over an effective flange width when the T-beams' flanges are in tension. This study presents an experimental and numerical investigation on the reinforced concrete flanged section's flexural behavior when reinforcement in the tension flange is laterally distributed. To achieve the goals of the study, numerical analysis using the finite element method was conducted on discretized flanged beam models validated via experimentally tested T-beam specimen. Parametric study was performed to investigate the effect of different parameters on the T-beams flexural behavior. The study revealed that a significant reduction in the

... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Civil Engineering Journal
Effects of GFRP Stirrup Spacing on the Behavior of Doubly GFRP-Reinforced Concrete Beams
...Show More Authors

This study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.

... Show More
View Publication
Scopus (16)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sun Nov 30 2025
Journal Name
Journal Of Physical Education
A comparative analysis , for some Elkinmetekih variables , in the performance of the skill (Nick shot the front reverse ) , between the players of the Iraqi team and the Egyptian , for young people in squash
...Show More Authors

View Publication