A study was carried out to determine the concentrations of trace metals in vegetables and fruits, which are locally available in the markets of Baghdad-samples of fourteen varieties of vegetables and fruits, belonging to Beta vulgaris, Brassica rapa, Daucus carota, Allium cepa, Eurica sativa, Malva silvestris, Coriandrum Sativum, Trigonella Foenum craecum, Anethum graveolens, Barassica oleracea, Phaseolus vulgaris, citrus reticulata, Py rus malus, and Punica granatum. Analysis for Cd,Pb, Mn, Fe, Co, Ni, Cu and Zn were determined by flame atomic absorption sp ectrophotometry. The results indicated that the Malva silvestris recorded the highest concentrations of Cd and Mn while Allium cepa showed the highest concentrations of Pb and Cu. But Eurica sativa, Anethum graveolens, phaseolus vulgaris and Daucus carota were observed the highest values of Fe, Co, Ni and Zn respectively. It can be noticed that the zinc has the highest values while the nickel recorded the lowest values in all studied samples.
The covid-19 pandemic sweeping the world and has rendered a large proportion of the workforce as they are unable to commute to work. This has resulted in employees and employers seeking alternative work arrangements, including the software industry. Then comes the need for the global market and international presence of many companies to implement the global virtual teams (GVTs). GVTs members are gradually engaged in globalized business environments across space, time and organizational boundaries via information and communication technologies. Despite the advancement of technology, the project managers are still facing many challenges in communication. Hense, to become a successful project manager still a big challenge for them. This study
... Show MoreThe recurrent somatic variations in
The aim of the study was to detect the frequency of R132 mutations in the
Background :Evening preparation for colonoscopy is often unsatisfactory and inconvenient. This study was performed to compare the efficacy of bowel preparation at two different timings: night before and morning of endoscopy and to compare the cecal intubation rate and disturbance of sleep hours between these two groups.
Methods: In this prospective randomized endoscopist- blinded trial, 150 patients were enrolled between March 2010 and August 2011. Patients aged between 18 to 80 years needing colonoscopy were included. Patients with prior bowel surgery, suspected bowel obstruction or those who didn't completely fulfill the preparation instructions were excluded. Patients received polyethyelen glycol electrolyte preparation in a mornin
This paper presents a comparative study between different oil production enhancement scenarios in the Saadi tight oil reservoir located in the Halfaya Iraqi oil field. The reservoir exhibits poor petrophysical characteristics, including medium pore size, low permeability (reaching zero in some areas), and high porosity of up to 25%. Previous stimulation techniques such as acid fracturing and matrix acidizing have yielded low oil production in this reservoir. Therefore, the feasibility of hydraulic fracturing stimulation and/or horizontal well drilling scenarios was assessed to increase the production rate. While horizontal drilling and hydraulic fracturing can improve well performance, they come with high costs, often accounting for up t
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreType 2 diabetes mellitus (T2DM) is the most frequent endocrinal disease commonly associated with thyroid disorders .The study is conducted at the Specialized Center for Endocrinology and Diabetes in Baghdad ,during December 2014 up to October 2015.This study was done to investigate the prevalence of anti- thyroid peroxidase (Anti-TPO) antibody in patients suffered from type 2 diabetes with thyroid disorders .The study groups included a total number of 80 subjects consisting of 60 type 2 diabetic patients divided into 20 hyperthyroidism subjects (group 1) ,20 hypothyroidism subjects (group 2), 20 euthyroidism subjects (group 3) and 20 healthy controls (group 4) . The fasting blood samples were analyzed for (T3,T4,TSH) by using Vitek Immuno d
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show More