The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and 1 g of graphene, the maximum efficiency of phenol removal of 92.58 % and chemical oxygen demand (COD) of 89.33 % were achieved with 32.976 kWh kg-1 phenol of consumed power. Based on the analysis of variance (ANOVA) results, the time has the highest impact on phenol removal efficiency, followed by iron foam and graphene dosage. In the present study, the 3D electro-Fenton technique with iron foam partials and carbon fiber modified with graphene was detected as a great choice for removing phenol from aqueous solutions due to its high efficiency, formation of highly reactive species, with excellent iron ions source electrode.
This paper aims to study the biosorption for removal of lead, cadmium, copper and arsenic ions using algae as a biosorbent. A series of experiments were carried out to obtain the breakthrough data in a fluidized bed reactor. The minimum fluidization velocities of beds were found to be 2.27 and 3.64 mm/s for mish sizes of 0.4-0.6 and 0.6-1 mm diameters, respectively. An ideal plug flow model has been adopted to characterize the fluidized bed reactor. This model has been solved numerically using MATLAB version 6.5. The results showed a well fitting with the experimental data. Different operating conditions were varied: static bed height, superficial velocity and particle diameter. The breakthrough curves were plotted for each metal. Pb2+ s
... Show MoreComputer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc
... Show MoreIn the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show MoreCloud storage provides scalable and low cost resources featuring economies of scale based on cross-user architecture. As the amount of data outsourced grows explosively, data deduplication, a technique that eliminates data redundancy, becomes essential. The most important cloud service is data storage. In order to protect the privacy of data owner, data are stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for data storage. Traditional deduplication schemes cannot work on encrypted data. Existing solutions of encrypted data deduplication suffer from security weakness. This paper proposes a combined compressive sensing and video deduplication to maximize
... Show MoreThe Present study investigated the drought in Iraq, by using the rainfall data which obtained from 39 meteorological stations for the past 30 years (1980-2010). The drought coefficient calculated on basis of the standard precipitation index (SPI) and then characteristics of drought magnitude, duration and intensity were analyzed. The correlation and regression between magnitude and duration of drought were obtained according the (SPI) index. The result shows that drought magnitude values were greater in the northeast region of Iraq.
Elemental capture spectroscopy (ECS) is an important tool in the petroleum industry for determining the composition and properties of rock formations in a reservoir. Knowledge of the types and abundance of different minerals in the reservoir is crucial for accurate petrophysical interpretation, reservoir engineering practices, and stratigraphic correlation. ECS measures the elemental content of the rock, which directly impacts several physical properties that are essential for reservoir characterization, such as porosity, fluid saturation, permeability, and matrix density. The ability to accurately determine these properties leads to better reservoir mapping, improved production, and more effective resource management. Accurately determi
... Show MoreAlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes