A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
An accurate and sensitive spectrophotometric method has been developed for the determination of carbamazepine (CRN.) in pure and dosage forms. The method is based on the oxidation of 2,4-dinitrophenylhydrazine (2,4-DNPHz) by potassium periodate than coupling with carbamazepine (CRN.) in alkaline medium to form a stable yellowish brown colored water-soluble dye with a maximum absorption at 485 nm. The variables that affect the completion of reaction have been carefully optimized. Beer’s law is obeyed over the concentration range of (4-50 μg.mL-1) with molar absorptivity of (6.7335×103 L.mol-1.cm1). The limit of detection was (0.1052 μg.mL-1) and Sandell’s sensitivity value was 0.0350 μg.cm-2.
... Show MoreThe purpose of this work is to concurrently estimate the UVvisible spectra of binary combinations of piroxicam and mefenamic acid using the chemometric approach. To create the model, spectral data from 73 samples (with wavelengths between 200 and 400 nm) were employed. A two-layer artificial neural network model was created, with two neurons in the output layer and fourteen neurons in the hidden layer. The model was trained to simulate the concentrations and spectra of piroxicam and mefenamic acid. For piroxicam and mefenamic acid, respectively, the Levenberg-Marquardt algorithm with feed-forward back-propagation learning produced root mean square errors of prediction of 0.1679 μg/mL and 0.1154 μg/mL, with coefficients of determination of
... Show MoreThe combined system of electrocoagulation (EC) and electro-oxidation (EO) is one of the most promising methods in dye removal. In this work, a solution of 200 mg/l of Congo red was used to examine the removal of anionic dye using an EC-EO system with three stainless steel electrodes as the auxiliary electrodes and an aluminum electrode as anode for the EC process, Cu-Mn-Ni Nanocomposite as anode for the EO process. This composite oxide was simultaneously synthesized by anodic and cathodic deposition of Cu (NO3)2, MnCl2, and Ni (NO3)2 salts with 0.075 M as concentrations of each salt with a fixed molar ratio (1:1:1) at a constant current density of 25 mA/cm2. The characteristics structure and surface morphology of the depo
... Show MoreFacial recognition has been an active field of imaging science. With the recent progresses in computer vision development, it is extensively applied in various areas, especially in law enforcement and security. Human face is a viable biometric that could be effectively used in both identification and verification. Thus far, regardless of a facial model and relevant metrics employed, its main shortcoming is that it requires a facial image, against which comparison is made. Therefore, closed circuit televisions and a facial database are always needed in an operational system. For the last few decades, unfortunately, we have experienced an emergence of asymmetric warfare, where acts of terrorism are often committed in secluded area with no
... Show MoreIn this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t
... Show MoreIn many scientific fields, Bayesian models are commonly used in recent research. This research presents a new Bayesian model for estimating parameters and forecasting using the Gibbs sampler algorithm. Posterior distributions are generated using the inverse gamma distribution and the multivariate normal distribution as prior distributions. The new method was used to investigate and summaries Bayesian statistics' posterior distribution. The theory and derivation of the posterior distribution are explained in detail in this paper. The proposed approach is applied to three simulation datasets of 100, 300, and 500 sample sizes. Also, the procedure was extended to the real dataset called the rock intensity dataset. The actual dataset is collecte
... Show More