LED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more efficiently and productively. The results of the cipher/decipher analysis, 15 NIST test, comparison between proposal FLED and original LED based on the results of correlation coefficient (CC)and Cosine Similarity (CS), execution time, and throughputs showed that the proposed FLED has faster cipher and more productive than the original LED; it is also more secure than the original LED.
In the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm (width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by con
... Show MoreA strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as
... Show MoreThe Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.
The current study suggested a thermal treatment as a necessary proactive step in improving the adsorption capacity of bio-waste for contaminants removal in wastewater. This approach was based on the experimental and histological investigation of biowaste pods shell. This investigation showed that these shells compose of parenchyma cells that store secondary metabolites compounds produced from cells were exhibited in present study. The results also reported that these compounds are extracted directly from the cells as soon as they are exposed to an aqueous solution, hampering their use as an adsorbent material. The increase in the weight of bio-waste adsorbent at unit liquid volume increases the production of secondary metabolites compounds
... Show MoreThe effect of internal acoustic excitation on the leading-edge, separated boundary layers and the aerodynamic performance of NACA23015 cross section airfoil are examined as a function of excitation location with ranging frequency range (50-400) Hz of the introduced acoustic. Tests are separately conducted in two sections, open type wind tunnels at the Reynolds number of 3.3x105 for measurement at angle of attack (0, 3, 6, 9 &12) deg. and 3x104 for the visualization at angle of attack (12) deg. based on the airfoil chord. Results indicated that the excitation frequency and the excitation location are the key parameters to alter the flow properties and thus to improve the aerodynamic performance. The most effective excitation frequency
... Show MoreFor over a century, the global consumption of asphalt binder in asphalt mixture production has been substantial. In the Heet region (west of Iraq), two distinct forms of natural asphalt (NA) deposits exist: rock asphalt and sulfur spring asphalt. This study focused on using NA sourced from sulfur springs. The aim was to investigate the potential of incorporating NA into local asphalt mixtures. To achieve this, NA was heated to 163°C for varying durations. After heat treatment, laboratory tests were conducted on NA. The findings suggest that by heating NA for 20 hours, it conforms to Iraqi specifications in terms of physical properties. Furthermore, compared to conventional petroleum asphalt, treated NA showed greater
... Show More