An in-depth experimental study of the matrix effect of antifreeze (ethylene glycol) and water contamination of engine oil through FT-IR spectroscopy. With a comparison of the percent by volume concentration of contaminated fresh 15W-40 engine oil, there appeared to be a noticeable reduction in the O–H stretching signal in the infrared spectrum when ethylene glycol based antifreeze was included as a contaminant. The contaminants of distilled water, a 50/50 mixture of water and commercial ethylene glycol antifreeze, and straight ethylene glycol antifreeze were compared and a signal reduction in the O–H stretch was clearly evident when glycol was present. Doubling the volume of the 50/50 mixture as compared to water alone still resulted in a weaker O–H stretching signal. The possibility that this signal reduction was due to the larger ethylene glycol molecule having fewer O–H bonds in a given sample size was eliminated by comparing samples with the same number of O–H bonds per unit volume. The strong hydrogen bonding between that of water and glycol appeared to reduce the O–H stretching signal, even after comparing the different sample types at concentrations with the same number of O–H bonds per unit volume. Tukey’s highly significant difference was used to show that samples of the 50/50 mixture and straight glycol were not reliably distinguishable from one another when comparing the same number of O–H bonds per unit volume but readily distinguishable from that of water as the lone contaminant.
The kinetics of removing cadmium from aqueous solutions was studied using a bio-electrochemical reactor with a packed bed rotating cylindrical cathode. The effect of applied voltage, initial concentration of cadmium, cathode rotation speed, and pH on the reaction rate constant (k) was studied. The results showed that the cathodic deposition occurred under the control of mass transfer for all applied voltage values used in this research. Accordingly, the relationship between logarithmic concentration gradient with time can be represented by a first-order kinetic rate equation. It was found that the rate constant (k) depends on the applied voltage, the initial cadmium concentration, the pH and the rotational speed of cathode. It
... Show MoreOften times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie
... Show MoreThe researcher seeks to get scientific facts through knowing the relationship between the priorities of Yemeni audience in follow-up paper daily newspapers compared to surfing publics the online journalism sites and the nature of information obtained from online journalism sites and printed paper newspapers and the impact of the daily newspapers in the priority of issues and political events among a sample of a group of Yemeni readers in order to identify the extent to keep up the paper daily newspapers of the development in the field of online journalism and the extent of reading paper newspapers under the intense competition by online journalism sites, and are paper newspapers able to keep pace with the actual developments provided by
... Show MoreThe thermal performance of a flat-plate solar collector (FPSC) using novel heat transfer fluids of aqueous colloidal dispersions of covalently functionalized multi-walled carbon nanotubes with β-Alanine (Ala-MWCNTs) has been studied. Multi-walled carbon nanotubes (MWCNTs) with outside diameters of (< 8 nm) and (20–30 nm) having specific surface areas (SSAs) of (500 m2/g) and (110 m2/g), respectively, were utilized. For each Ala-MWCNTs, waterbased nanofluids were synthesized using weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1%. A MATLAB code was built and a test rig was designed and developed. Heat flux intensities of 600, 800, and 1000 W/m2; mass flow rates of 0.6, 1.0, and 1.4 kg/min; and inlet fluid temperatures of 30, 40, an
... Show More