This mini review provides an overview of methods for manufacturing expanded graphite (EGT) and the use of its composites with metal oxides in the field of photodegradation of dyes. Dyes from textile manufacturing represent a significant environmental pollution problem in waterways worldwide, highlighting the need for environmentally friendly and efficient technologies to remove dyes from industrial and local wastewater. Photodegradation technologies offer a low-cost, sustainable solution with minimal secondary pollution. Carbon-based materials, such as expanded graphite, are advantageous in enhancing catalytic activity. Accordingly, this review will explore the different fabrication techniques of expanded graphite and summarize the recent development of EGT-metal oxide composite in photocatalysis process towards environmental remediation application. From this study concludes that the photodegradation method using metal oxideexpanded graphite composite is an effective and cost-efficient option for degrading dyes.
In this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
Soils that cause effective damages to engineer structures (such as pavement and foundation) are called problematic or difficult soils (include collapsible soil, expansive soil, etc.). These damages occur due to poor or unfavorited engineering properties, such as low shear strength, high compressibility, high volume changes, etc. In the case of expansive soil, the problem of the shrink-swell phenomenon, when the soil reacts with water, is more pronounced. To overcome such problems, soils can be treated or stabilized with many stabilization ways (mechanical, chemical, etc.). Such ways can amend the unfavorited soil properties. In this review, the pozzolanic materials have been selected to be presented and discussed as chem
... Show MoreConstitutional Review of 1992 and 1996 and the role of the Party of Progress and Socialism
Adsorption is one of the most important technologies for the treatment of polluted water from dyes. Theaim of this study is to use a low-cost adsorbent for this purpose. A novel and economical adsorbent was used to remove methyl violet dye (MV) from aqueous solutions. This adsorbent was prepared from bean peel, which is an agricultural waste. Batch adsorption experiments were conducted to study the ability of the bean peel adsorbent (BPA) to remove the methyl violet (MV) dye. The effects of different variables, such as weight of the adsorbent, pH of the MV solution, initial concentration of MV, contact time and temperature, on the adsorption behaviour were studied. It was found experimentally that the time required to achieve equilibrium
... Show MoreThis study revealed the efficiency of Bacillus subtilisin degrading two textile dyes (disperse red and disperse yellow), the rates of red dye removal when measured after 24, 48, 72 and 96 hours for the concentrations of 50 ppm were 51.67, 67.56, 84.67 and 95.33%, for the concentration 150 ppm were 41.67, 62.67, 80.67 and 89.67%, while for the concentration 300 ppm were 25.67, 42.67, 71.67 and 84.33%. The results of yellow dye removal showed that the concentration of 50 ppm were 49.67, 65.33, 83.33 and 92.67%, for the concentration of 150 ppm were 38.33, 60.33, 77.33 and 87.33%, and for the concentration, 300 ppm were 24, 36.67, 68.33 and 81.67%, when measured after 24, 48, 72 and 96 hours. Results recorded a slight decrease in pH valu
... Show More