The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences into BRAC, BRAF, and KRAS categories. Our comprehensive methodology includes rigorous data preprocessing, model training, and a multi-faceted evaluation approach. The adapted U-Net model exhibited exceptional performance, achieving an overall accuracy of 0.96. The model also achieved high precision and recall rates across the classes, with precision ranging from 0.93 to 1.00 and recall between 0.95 and 0.97 for the key markers BRAC, BRAF, and KRAS. The F1-score for these critical markers ranged from 0.95 to 0.98. These empirical results substantiate the architecture’s capability to capture local and global features in DNA sequences, affirming its applicability for critical, sequence-based bioinformatics challenges
In this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking
... Show MoreThe research aims to present a proposed strategy for the North Oil Company, and the proposed strategy took into account the surrounding environmental conditions and adopted in its formulation on the basis and scientific steps that are comprehensive and realistic, as it covered the main activities of the company (production and exploration activities, refining and refining activities, export and transport of oil, research and development activity, financial activity, information technology, human resources) and the (David) model has been adopted in the environmental analysis of the factors that have been diagnosed according to a
... Show MoreIn this paper, a mathematical model was built for the supply chain to reduce production, inventory, and transportation in Baghdad Company for Soft Drink. The linear programming method was used to solve this mathematical model. We reduced the cost of production by reduced the daily work hours, the company do not need the overtime hours to work at the same levels of production, and the costs of storage in the company's warehouses and agents' stores have been reduced by making use of the stock correctly, which guarantees reducing costs and preserving products from damage. The units transferred from the company were equal to the units demanded by the agents. The company's mathematical model also achieved profits by (84,663,769) by re
... Show MoreA computational investigation has been carried out on the design and properties of the electrostatic mirror. In this research, we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The electron beam path under zero magnification condition had been investigated as mirror trajectory with the aid of fourth – order – Runge – Kutta method. The spherical and chromatic aberration coefficients of mirror has computed and normalized in terms of the focal length. The choice of the mirror depends on the operational requirements, i.e. each optical element in optical system has suffer from the chromatic aberration, for this case, it is use to operate the mirror in optical system at various values
... Show More<span lang="EN-US">The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of e
... Show More* Khalifa E. Sharquie1, Hayder Al-Hamamy2, Adil A. Noaimi1, Mohammed A. Al-Marsomy3, Husam Ali Salman4, American Journal of Dermatology and Venereology, 2014 - Cited by 2
The Environmental Data Acquisition Telemetry System is a versatile, flexible and economical means to accumulate data from multiple sensors at remote locations over an extended period of time; the data is normally transferred to the final destination and saved for further analysis.
This paper introduces the design and implementation of a simplified, economical and practical telemetry system to collect and transfer the environmental parameters (humidity, temperature, pressure etc.) from a remote location (Rural Area) to the processing and displaying unit.
To get a flexible and practical system, three data transfer methods (three systems) were proposed (including the design and implementation) for rural area services, the fi
... Show More