Survival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete hazard function and the time-dependent parameters, two estimation methods have been used that depend on the Bayes method according to dynamic modeling: the Maximum A Posterior method (MAP) This method was done using numerical methods represented by a Iteratively Weighted Kalman Filter Smoothing (IWKFS) and in combination with the Expectation maximization algorithm (EM), the other method is represented by the Hybrid Markov Chains Monte Carlo (HMCMC) method using the Metropolis Hasting algorithm (MH) and Gypsum sampling (GS). It was concluded that survival analysis by descretization the data into a set of intervals is more flexible and fluid, as this allows analyzing risks and diagnosing impacts that vary over time. The study was applied in the survival analysis on dialysis until either death occurred due to kidney failure or the competing event, represented by kidney transplantation. The most important variables affecting the patient’s cessation of dialysis were also identified for both events in this research.
Sand production in unconsolidated reservoirs has become a cause of concern for production engineers. Issues with sand production include increased wellbore instability and surface subsidence, plugging of production liners, and potential damage to surface facilities. A field case in southeast Iraq was conducted to predict the critical drawdown pressures (CDDP) at which the well can produce without sanding. A stress and sanding onset models were developed for Zubair reservoir. The results show that sanding risk occurs when rock strength is less than 7,250 psi, and the ratio of shear modulus to the bulk compressibility is less than 0.8 1012 psi2. As the rock strength is increased, the sand free drawdown and depletion becomes larger. The CDDP
... Show Morethe financial resources represent a basic factor of production ;It is obvious that the housing sector needs the resources to finance the building operation to produce all the housing units. Finance is the cornerstone of any housing strategy , as its successes dependent on the success of the financing methods and the creation of charnels and effective methods for the provision of the required finances for both individuals and instantly concerned with the production of housing units. The kinds of financial institutions vary from one country to another according to the nature of the economic and financial system. The lending conditions also vary as well as the capital cost of the housing units needed The housing operations is concer
... Show MoreAbstract
This study aimed to identify the business risks using the approach of the client strategy analysis in order to improve the efficiency and effectiveness of the audit process. A study of business risks and their impact on the efficiency and effectiveness of the audit process has been performed to establish a cognitive framework of the main objective of this study, in which the descriptive analytical method has been adopted. A survey questionnaire has been developed and distributed to the targeted group of audit firms which have profession license from the Auditors Association in the Gaza Strip (63 offices). A hundred questionnaires have been distributed to the study sample of which, a total of 84 where answered and
... Show MoreMaulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the method To address a problem and method To address a problem , In this research a comparisons are employed between the biased method and unbiased method with Bayesian using Gamma distribution method addition to Ordinary Least Square metho
... Show MoreCoronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models
... Show MoreABSTRACT:
Objectives: The study aims to know the effectiveness of the educational program in the patient’s adherence to medication and diet and to know the relationship between the effectiveness of the education program and their demographic data related to the patient’s age, gender, marital status, education level, occupation, monthly income and residence.
Methodology: A quasi -experimental design study was performed on patient who attended to Gastroenterology and Hepatology Teaching Hospital, from March 2021 to September 2021. The non-probability sampling including 50 patients for case study and 30 patients for control group. The questionnaire consists of 3 parts, part one the socio
... Show MoreAntibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusi
... Show MoreThe idea of carrying out research on incomplete data came from the circumstances of our dear country and the horrors of war, which resulted in the missing of many important data and in all aspects of economic, natural, health, scientific life, etc.,. The reasons for the missing are different, including what is outside the will of the concerned or be the will of the concerned, which is planned for that because of the cost or risk or because of the lack of possibilities for inspection. The missing data in this study were processed using Principal Component Analysis and self-organizing map methods using simulation. The variables of child health and variables affecting children's health were taken into account: breastfeed
... Show MoreAbstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreDiabetes mellitus type 2 (T2DM) is a chronic and progressive condition, which affects people all around the world. The risk of complications increases with age if the disease is not managed properly. Diabetic neuropathy is caused by excessive blood glucose and lipid levels, resulting in nerve damage. Apelin is a peptide hormone that is found in different human organs, including the central nervous system and adipose tissue. The aim of this study is to estimate Apelin levels in diabetes type 2 and Diabetic peripheral Neuropathy (DPN) Iraqi patients and show the extent of peripheral nerve damage. The current study included 120 participants: 40 patients with Diabetes Mellitus, 40 patients with Diabetic peripheral Neuropathy, and 40 healthy
... Show More