Survival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete hazard function and the time-dependent parameters, two estimation methods have been used that depend on the Bayes method according to dynamic modeling: the Maximum A Posterior method (MAP) This method was done using numerical methods represented by a Iteratively Weighted Kalman Filter Smoothing (IWKFS) and in combination with the Expectation maximization algorithm (EM), the other method is represented by the Hybrid Markov Chains Monte Carlo (HMCMC) method using the Metropolis Hasting algorithm (MH) and Gypsum sampling (GS). It was concluded that survival analysis by descretization the data into a set of intervals is more flexible and fluid, as this allows analyzing risks and diagnosing impacts that vary over time. The study was applied in the survival analysis on dialysis until either death occurred due to kidney failure or the competing event, represented by kidney transplantation. The most important variables affecting the patient’s cessation of dialysis were also identified for both events in this research.
Nowadays, energy demand continuously rises while energy stocks are dwindling. Using current resources more effectively is crucial for the world. A wide method to effectively utilize energy is to generate electricity using thermal gas turbines (GT). One of the most important problems that gas turbines suffer from is high ambient air temperature especially in summer. The current paper details the effects of ambient conditions on the performance of a gas turbine through energy audits taking into account the influence of ambient conditions on the specific heat capacity ( , isentropic exponent ( ) as well as the gas constant of air . A computer program was developed to examine the operation of a power plant at various ambient temperature
... Show MoreNGC 6946 have been observed with BVRI filters, on October 15-18,
2012, with the Newtonian focus of the 1.88m telescope, Kottamia
observatory, of the National Research Institute of Astronomy and
Geophysics, Egypt (NRIAG), then we combine the BVRI filters to
obtain an astronomical image to the spiral galaxy NGC 6946 which
is regarded main source of information to discover the components of
this galaxy, where galaxies are considered the essential element of
the universe. To know the components of NGC 6946, we studied it
with the Variable Precision Rough Sets technique to determine the
contribution of the Bulge, disk, and arms of NGC 6946 according to
different color in the image. From image we can determined th
Experimental research was carried out to investigate the effect of fire flame (high temperature) on specimens of short columns manufactured using SCC (Self compacted concrete). To simulate the real practical fire disasters, the specimens were exposed to high
temperature flame, using furnace manufactured for this purpose. The column specimens were cooled in two ways. In the first the specimens were left in the air and suddenly cooled using water, after that the specimens were loaded to study the effect of degree of
temperature, steel reinforcement ratio and cooling rate, on the load carrying capacity of the reinforced concrete column specimens. The results will be compared with behaviour of columns without burning (control specime
In this work various correlation methods were employed to investigate the annual cross-correlation patterns among three different ionospheric parameters: Optimum Working Frequency (OWF), Highest Probable Frequency (HPF), and Best Usable Frequency (BUF). The annual predicted dataset for these parameters were generated using VOCAP and ASASPS models based on the monthly Sunspot Numbers (SSN) during two years of solar cycle 24, minimum 2009 and maximum 2014. The investigation was conducted for Thirty-two different transmitter/receiver stations distributed over Middle East. The locations were selected based on the geodesic parameters which were calculated for different path lengths (500, 1000, 1500, and 2000) km and bearings (N, NE, E, S
... Show More