Preferred Language
Articles
/
Ehcy2o0BVTCNdQwCMCcp
Immunohistochemical expression of angiotensin‐converting enzyme 2 in superficial and deep maxillofacial tissues: A cross‐sectional study
...Show More Authors
Abstract<sec><title>Background and Aims

The involvement of maxillofacial tissues in SARS‐CoV‐2 infections ranges from mild dysgeusia to life‐threatening tissue necrosis, as seen in SARS‐CoV‐2‐associated mucormycosis. Angiotensin‐converting enzyme 2 (ACE2) which functions as a receptor for SARS‐CoV‐2 was reported in the epithelial surfaces of the oral and nasal cavities; however, a complete understanding of the expression patterns in deep oral and maxillofacial tissues is still lacking.

Methods

The immunohistochemical expression of ACE2 was analyzed in 95 specimens from maxillofacial tissues and 10 specimens of pulmonary alveolar tissue using a semiquantitative immunohistochemical scoring procedure, taking into account all superficial and deep maxillofacial tissue cells. We also explored the associations of age, gender, and anatomical site with expression scores.

Results

ACE2 was detected in keratinized epithelia (57.34%), non‐keratinized epithelia (46.51%), nasal respiratory epithelial cells (73.35%), pulmonary alveolar cells (82.54%), fibroblasts (63.69%), vascular endothelial cells (58.43%), mucous acinar cells (59.88%), serous acinar cells (79.49%), salivary duct cells (86.26%) skeletal muscle fibers (71.01%), neuron support cells (94.25%), and bone marrow cells (72.65%). Age and gender did not affect the expression levels significantly in epithelial cells (p = 0.76, and p = 0.7 respectively); however, identical cells expressed different protein levels depending on the site from which the specimens were obtained. For example, dorsal tongue epithelia expressed significantly lower ACE2 scores than alveolar epithelia (p < 0.001). A positive correlation was found between ACE2 expression in fibroblasts and epithelial cells (r = 0.378, p = 0.001), and between vascular endothelial and epithelial cells (r = 0.395, p = 0.001).

Conclusion

ACE2 is expressed by epithelial cells and subepithelial tissues including fibroblasts, vascular endothelia, skeletal muscles, peripheral nerves, and bone marrow. No correlation was detected between ACE2 expression and patient age or sex while the epithelial expression scores were correlated with stromal scores.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 15 2018
Journal Name
Journal Of Baghdad College Of Dentistry
Clinicopathological and Immunohistochemical Analysis of 21 cases of Traumatic Ulcerative Granuloma with Stromal Eosinophilia Using CD30, CD68 and TGF-β1
...Show More Authors

Background: Traumatic ulcerative granuloma with stromal eosinophilia is an impressive benign chronic ulcerative lesion of the oral mucosa with vague etiopathogenesis. It was supposed to represent an oral counterpart of primary cutaneous CD30+ lymphoproliferative disorder. Histopathologically, it is characterized by mixed inflammatory infiltrate predominated by histiocytes, lymphocytes and eosinophils along with presence of scattered large atypical mononuclear cells. It has worrisome clinical presentation. It may heal spontaneously, but in most occasions it persists and never heal unless removed surgically (incisional or excisional biopsy). A rare subset may show worrisome immunohistochemical features. Follow up is highly recommended. Mat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Utilizing Deep Learning Technique for Arabic Image Captioning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (24)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (12)
Scopus
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Thu Oct 31 2024
Journal Name
Intelligent Automation And Soft Computing
Fusion of Type-2 Neutrosophic Similarity Measure in Signatures Verification Systems: A New Forensic Document Analysis Paradigm
...Show More Authors

Signature verification involves vague situations in which a signature could resemble many reference samples or might differ because of handwriting variances. By presenting the features and similarity score of signatures from the matching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy, a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertainties and ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values, which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1 neutrosophic representation is also unable to adjust to various

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Wuhan University Journal Of Natural Sciences
Prolactin is a Novel Biochemical Marker in Sera of Iraqi Type-2 Diabetic Women With Metabolic Syndrome in Baghdad.
...Show More Authors

Abstract Metabolic syndrome (MS) is a group of clinical and biological abnormalities included risk of insulin resistance , disorders in glucose metabolism , abdominal obesity and abnormal lipid profile these features confer a greater risk of cardiovascular diseases . Anyway, the co-occurrence of diabetes mellitus and metabolic syndrome potentiates the cardiovascular risk associated with each of the two conditions. The present study aimed to determine a relationship between prolactin level in type -2- diabetic Iraqi women and metabolic syndrome, as well to find a relationship between prolactin level and other studied biochemical markers. seventy menopausal diabetic women with metabolic syndrome with age in range (45-50) years were enrolled i

... Show More
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Investigation of Beta and Gamma Rays Total Interaction Cross Section and Effective Atomic Number for CR-39Nuclear Track Detector
...Show More Authors

CR-39 is a solid state nuclear track detector (SSNTD) that has been used in many research areas. In spite of the assumption that the CR-39 detectors are insensitive to beta and gamma rays, irradiation with these rays can have significant effects on the detector properties. In this study, beta and gamma rays mass attenuation coefficients μ/ρ (cm2 g-1) for the CR-39 detector have been measured using NaI(Tl) scintillation spectrometer along with a standard geometrical arrangement in the energy region of (0.546-2.274) MeV beta rays and standard gamma sources having energy 0.356, 0.5697, 0.6617 and 1.063 MeV. The total atomic cross-section (σtot), total electronic cross-section (σT E) and the effective atomic number (Zeff) of gamma rays a

... Show More
View Publication Preview PDF