Preferred Language
Articles
/
ERjiW5QBVTCNdQwC9BMU
Capacitance and Resistivity Measurements of Polythiophene /Metallic Nanoparticles-based Humidity Sensors
...Show More Authors

Capacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level.  While the resistivity While the resistivity decrease nonlinearity in the variation of humidity level from 10% to 100%.. The results show that the recovery and response times were higher for the Al/P3HT/Cu/Al sensor compared with those of the other nanoparticles.   

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
On the Laser Micro Cutting: Experimentation and Mathematical Modeling based on RSM-CCD
...Show More Authors

The laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
2017 11th Asian Control Conference (ascc)
ESO-based repetitive control for rejecting periodic and aperiodic disturbances in piezoelectric actuators
...Show More Authors

This paper presents the Extended State Observer (ESO) based repetitive control (RC) for piezoelectric actuator (PEA) based nano-positioning systems. The system stability is proved using Linear Matrix Inequalities (LMIs), which guarantees the asymptotic stability of the system. The ESObased RC used in this paper has the ability to eliminate periodic disturbances, aperiodic disturbances and model uncertainties. Moreover, ESO can be tuned using only two parameters and the model free approach of ESO-based RC, makes it an ideal solution to overcome the challenges of nano-positioning system control. Different types of periodic and aperiodic disturbances are used in simulation to demonstrate the effectiveness of the algorithm. The comparison studi

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Topology-Based Modularity and Modularity Density for Detecting Protein Complexes: A Comparative Study
...Show More Authors

     Binary relations or interactions among bio-entities, such as proteins, set up the essential part of any living biological system. Protein-protein interactions are usually structured in a graph data structure called "protein-protein interaction networks" (PPINs). Analysis of PPINs into complexes tries to lay out the significant knowledge needed to answer many unresolved questions, including how cells are organized and how proteins work. However, complex detection problems fall under the category of non-deterministic polynomial-time hard (NP-Hard) problems due to their computational complexity. To accommodate such combinatorial explosions, evolutionary algorithms (EAs) are proven effective alternatives to heuristics in solvin

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jul 06 2024
Journal Name
Multimedia Tools And Applications
Text classification based on optimization feature selection methods: a review and future directions
...Show More Authors

A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri May 04 2018
Journal Name
Wireless Personal Communications
IFRS: An Indexed Face Recognition System Based on Face Recognition and RFID Technologies
...Show More Authors

View Publication
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Wed Sep 26 2018
Journal Name
Communications In Computer And Information Science
A New RGB Image Encryption Based on DNA Encoding and Multi-chaotic Maps
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Transfer Learning Based Traffic Light Detection and Recognition Using CNN Inception-V3 Model
...Show More Authors

Due to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
A Pseudo-Random Number Generator Based on New Hybrid LFSR and LCG Algorithm
...Show More Authors

      In many areas, such as simulation, numerical analysis, computer programming, decision-making, entertainment, and coding, a random number input is required. The pseudo-random number uses its seed value. In this paper, a hybrid method for pseudo number generation is proposed using Linear Feedback Shift Registers (LFSR) and Linear Congruential Generator (LCG). The hybrid method for generating keys is proposed by merging technologies. In each method, a new large in key-space group of numbers were generated separately. Also, a higher level of secrecy is gained such that the internal numbers generated from LFSR are combined with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are linear structures and outputs

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (6)
Scopus Crossref
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
The Proposed Collaborative Filtering Recommender System Based on Implicit and Explicit User's Preferences
...Show More Authors

The expansion of web applications like e-commerce and other services yields an exponential increase in offers and choices in the web. From these needs, the recommender system applications have arisen. This research proposed a recommender system that uses user's reviews as implicit feedback to extract user preferences from their reviews to enhance personalization in addition to the explicit ratings. Diversity also improved by using k-furthest neighbor algorithm upon user's clusters. The system tested using Douban movie standard dataset from Kaggle, and show good performance. 

View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref