This study was aimed to monitor oral zinc sulfate role on local cervical proinflammatory cytokines in HPV-infected women comparing with these cytokines before treatment application. A cervical secretion got from 28 infected women before and after treatment with zinc sulfate, these samples assessed various markers of inflammation including interleukin-1β, IL-8, and IL-12. Results manifested that improve and clear the cervical HPV infections after three months of zinc treatment 46.43% and 21.43%, respectively. Viral infections with single and multiple HPV high-risk types are raising of studied cytokines after 3-month compared with single HPV low-risk type. Moreover, this increasing was statistically significant only in IL-12 and IL-1. Women more than 30 years and with multiple HPV genotypes are the most benefit of zinc treatment had a high level of cytokines. This study concludes that IL-1 and IL-12 secretion are the most effects with zinc treatment at over three months to improve mild HPV infection with good hygiene.
Ring theory is one of the influential branches of abstract algebra. In this field, many algebraic problems have been considered by mathematical researchers who are working in this field. However, some new concepts have been created and developed to present some algebraic structures with their properties. Rings with derivations have been studied fifty years ago, especially the relationships between the derivations and the structure of a ring. By using the notatin of derivation, many results have been obtained in the literature with different types of derivations. In this paper, the concept of the derivation theory of a ring has been considered. This study presented the definition of
Ring theory is one of the influ
... Show MoreIn this paper, we study the class of prime semimodules and the related concepts, such as the class of semimodules, the class of Dedekind semidomains, the class of prime semimodules which is invariant subsemimodules of its injective hull, and the compressible semimodules. In order to make the work as complete as possible, we stated, and sometimes proved, some known results related to the above concepts.
Abstract
A new type of solar air heater was designed, fabricated, and tested in Baghdad, Iraq winter conditions. The heater consists of two main parts. The horizontal section was filled with the black colored iron chip while the vertical part has five pipes filled with Iraqi paraffin wax. A fan was fixed at the exit of the air. Two cases were studied: when the air moved by natural convection and when forced convection moved it. The studied air heater has proven its effectiveness as it heated the air passing through it to high temperatures. The results manifest that using little air movement makes the temperatures, stored energies, and efficiencies of the two studied cases converge
... Show MoreInterval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreThe definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
A class of hyperrings known as divisible hyperrings will be studied in this paper. It will be presented as each element in this hyperring is a divisible element. Also shows the relationship between the Jacobsen Radical, and the set of invertible elements and gets some results, and linked these results with the divisible hyperring. After going through the concept of divisible hypermodule that presented 2017, later in 2022, the concept of the divisible hyperring will be related to the concept of division hyperring, where each division hyperring is divisible and the converse is achieved under conditions that will be explained in the theorem 3.14. At the end of this paper, it will be clear that the goal of this paper is to study the concept
... Show MoreDespite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
The general objective of surface shape descriptors techniques is to categorize several surface shapes from collection data. Gaussian (K) and Mean (H) curvatures are the most broadly utilized indicators for surface shape characterization in collection image analysis. This paper explains the details of some descriptions (K and H), The discriminating power of 3D descriptors taken away from 3D surfaces (faces) is analyzed and present the experiment results of applying these descriptions on 3D face (with polygon mesh and point cloud representations). The results shows that Gaussian and Mean curvatures are important to discover unique points on the 3d surface (face) and the experiment result shows that these curvatures are very useful for some
... Show More