Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).
The research aims at integrating the disclosure of the business models with the qualitative characteristics of accounting information. To achieve this, the elements of the business model should be identified and disclosed, and then study the possibility of integrating the disclosure of the business model with the qualitative characteristics of accounting information.
To achieve this objective, the research was based on the indicators of disclosure of the business model of the International Accounting Standards Board to measure the disclosure of the business model.
The research reached a number of conclusions, the most important of which were as follows:
Fi
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
This research aims to estimate production functions through which production relations, possibilities for production elements substitution, measurement of its substitution elasticity, and efficiency and distribution coefficients can be analyzed. This would be done through estimation of constant elasticity of substitution production function for agricultural companies in Iraq depending on data from Iraqi Stock Exchange reports of 2005-2016. The researcher had used panel data model and estimated its three models: the Pooled Regression Model (PRM), the Fixed Effect Model (FEM) and the Random Effect Model (REM). A comparison was made for theses three models using F, LM, Husman tests. Tests show that Fixed Effect Model (FEM) is the best
... Show MoreAbstract:
One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.
Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MorePhotovoltaic (PV) devices are widely used renewable energy resources and have been increasingly manufactured by many firms and trademarks. This condition makes the selection of right product difficult and requires the development of a fast, accurate and easy setup that can be implemented to test available samples and select the cost effective, efficient, and reliable product for implementation. An automated test setup for PV panels using LabVIEW and several microcontroller-based embedded systems were designed, tested, and implemented. This PV testing system was fully automated, where the only human intervention required was the instalment of PV panel and set up of required testing conditions. The designed and implemented system was
... Show MoreThis paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori
... Show More