Preferred Language
Articles
/
ERdMlY4BVTCNdQwCMFVu
Semi-parametric regression function estimation for environmental pollution with measurement error using artificial flower pollination algorithm
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).

Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Ranking Function to Solve a Fuzzy Multiple Objective Function
...Show More Authors

In this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better

View Publication Preview PDF
Scopus (16)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Feb 14 2022
Journal Name
Proceedings Of The National Academy Of Sciences
Pharmaceutical pollution of the world’s rivers
...Show More Authors

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across

... Show More
View Publication
Scopus (1087)
Crossref (1060)
Scopus Clarivate Crossref
Publication Date
Sat Jul 15 2023
Journal Name
Journal Of Interdisciplinary Mathematics
Some games via semi-generalized regular spaces
...Show More Authors

In this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented

View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Thu Apr 06 2017
Journal Name
Global Journal Of Engineering Science And Researches 4(2348-8034):48-52
ON SEMI-STRONG (WEAK)CJ-TOPLOGICAL SPACES
...Show More Authors

Publication Date
Sun Dec 31 2023
Journal Name
Sumer Journal For Pure Science
COVID-19Disease Diagnosis using Artificial Intelligence based on Gene Expression: A Review
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Increasing Safety in Highways Transit Systems by Using Ethical Artificial Intelligence AI
...Show More Authors

“Smart city” projects have become fully developed and are actively using video analytics. Our study looks at how video analytics from surveillance cameras can help manage urban areas, making the environment safer and residents happier. Every year hundreds of people fall on subway and railway lines. The causes of these accidents include crowding, fights, sudden health problems such as dizziness or heart attacks, as well as those who intentionally jump in front of trains. These accidents may not cause deaths, but they cause delays for tens of thousands of passengers. Sometimes passers-by have time to react to the event and try to prevent it, or contact station personnel, but computers can react faster in such situations by using ethical

... Show More
View Publication
Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Crescent Moon Visibility: A New Criterion using Deep learned Artificial Neural-Network
...Show More Authors

     Many authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai

... Show More
Preview PDF
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
View Publication Preview PDF
Crossref (3)
Crossref