Preferred Language
Articles
/
ERdMlY4BVTCNdQwCMFVu
Semi-parametric regression function estimation for environmental pollution with measurement error using artificial flower pollination algorithm
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).

Publication Date
Tue Apr 02 2024
Journal Name
Engineering, Technology & Applied Science Research
Two Proposed Models for Face Recognition: Achieving High Accuracy and Speed with Artificial Intelligence
...Show More Authors

In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen

... Show More
View Publication Preview PDF
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Journal Of Mathematics
Estimation of Parameters of Finite Mixture of Rayleigh Distribution by the Expectation-Maximization Algorithm
...Show More Authors

In the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of parameters of two-dimensional sinusoidal signal model by employing Deferential Evaluation algorithm and the use of Sequential approach in estimation
...Show More Authors

Estimation the unknown parameters of a two-dimensional sinusoidal signal model is an important and a difficult problem , The importance of this model  in modeling Symmetric gray- scale texture image . In this paper, we propose employment Deferential Evaluation algorithm and the use of Sequential approach to estimate the unknown frequencies and amplitudes of the 2-D sinusoidal components when the signal is affected by noise. Numerical simulation are performed for different sample size, and various level of standard deviation to observe the performance of this method in estimate the parameters of 2-D sinusoidal signal model , This model was used for modeling  the Symmetric gray scale texture image and estimating by using

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Error Analysis in Numerical Algorithms
...Show More Authors

   In this paper, we applied the concept of the error analysis using the linearization method and new condition numbers constituting optimal bounds in appraisals of the possible errors. Evaluations of finite continued fractions, computations of determinates of tridiagonal systems, of determinates of second order and a "fast" complex multiplication. As in Horner's scheme, present rounding error analysis of product and summation algorithms. The error estimates are tested by numerical examples. The executed program for calculation is "MATLAB 7" from the website "Mathworks.com

View Publication Preview PDF
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare to the conditional logistic regression models with fixed and mixed effects for longitudinal data
...Show More Authors

Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Maximum Likelihood and Bayesian Methods For Estimating The Gamma Regression With Practical Application
...Show More Authors

In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 01 2008
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Measurement of extracellular fluid compartment volume using inulin:
...Show More Authors

Background:
There is a need to find methods to assess the size of the extracellular fluid (ECF) volume without involving radioactive tracers. For this purpose, the simple delusion method was used
to measure the ECF in rabbits and the inulin which is a polysaccharide was used as a marker of ECF measurement.
Methods:
18 male rabbits were used in this study. 8 of these animals were bilaterally nephroctomized to calculate the exact time to get diffusion equilibrium time after a bolus dose of inulin at a
dose of 25mg/kg of a solution of inulin 10 mg/ml. intravenously. The blood samples were taken after 1, 15, 45, 60, 90, 120, and 180 min.
Results:
ECF volume was about 144.5 to 149.7 ml/kg depending on the i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Slice inverse regression with the principal components in reducing high-dimensions data by using simulation
...Show More Authors

This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions,    (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Growth and Characterization of CdTe Nanorods Flower-like shape
...Show More Authors

CdTe nanorods were prepared by using aqueous chemical synthesis. The influences of reaction time (1-3 hours) on the optical and structural properties were studied. The UV-visible absorption spectrum reflects a wide absorption range in the visible spectrum. The energy gap calculations show decrease in the energy gap with increasing reaction time. The SEM images show that the CdTe appears as flower of nanorods-like.

View Publication Preview PDF
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Using dickey _ fuller expanded test for testing variables of investment function in Iraq
...Show More Authors

         To ascertain the stability or instability of time series, three versions of the model proposed by Dickie-Voller were used in this paper. The aim of this study is to explain the extent of the impact of some economic variables such as the supply of money, gross domestic product, national income, after reaching the stability of these variables. The results show that the variable money supply, the GDP variable, and the exchange rate variable were all stable at the level of the first difference in the time series. This means that the series is an integrated first-class series. Hence, the gross fixed capital formation variable, the variable national income, and the variable interest rate

... Show More
View Publication Preview PDF
Crossref