Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).
Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead
... Show MoreThe use of non-parametric models and subsequent estimation methods requires that many of the initial conditions that must be met to represent those models of society under study are appropriate, prompting researchers to look for more flexible models, which are represented by non-parametric models
In this study, the most important and most widespread estimations of the estimation of the nonlinear regression function were investigated using Nadaraya-Watson and Regression Local Ploynomial, which are one of the types of non-linear
... Show MoreWeibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreThe research aims to identify the concept of green taxes and their role in reducing environmental pollution through the poll of Abnh of taxpayers and employees of the General Authority for taxes totaling 200 individual .autam adoption of the resolution as a tool head for the collection of data and information from the sample and analyzed their responses using a statistical program (spss - 10), and calculating the percentages and the arithmetic mean, standard deviation and research found to a number of conclusions, notably the lack of legislation with the challenges and the difficulty of the existence of a measure or a standard lack of planning for the application of environmental taxes that the state taxation application between the Gene
... Show MoreTransforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreThe esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.
This study was carried out to measure the percentage of heavy metals pollution in the water of the Diyala river and to measure the percentage of contamination of these elements in the leafy vegetables grown on both sides of the Diyala river, which are irrigated by the contaminated river water (celery, radish, lepidium, green onions, beta vulgaris subsp, and malva). Laboratory analysis was achieved to measure the ratio of heavy element contamination (Pb, Fe, Ni, Cd, Zn and Cr) using flame atomic absorption spectrophotometer during the summer months of July and August for the year 2017. The study showed that the elements of zinc, chromium, nickel and cadmium were high concentrations and exceeded. The maximum concentration of these
... Show MoreEstimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar
... Show MoreThis research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.