Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).
Bootstrap is one of an important re-sampling technique which has given the attention of researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con
... Show MoreThis paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
In this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show MoreThis paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
In this paper, we proposed a new class of Weighted Rayleigh Distribution based on two parameters, one is scale parameter and the other is shape parameter which introduced in Rayleigh distribution. The main properties of this class are derived and investigated in . The moment method and maximum likelihood method are used to obtain estimators of parameters, survival function and hazard function. Real data sets are collected to investigate two methods which depend it in this study. A comparison was made between two methods of estimation.
In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
This research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreThe use of non-parametric models and subsequent estimation methods requires that many of the initial conditions that must be met to represent those models of society under study are appropriate, prompting researchers to look for more flexible models, which are represented by non-parametric models
In this study, the most important and most widespread estimations of the estimation of the nonlinear regression function were investigated using Nadaraya-Watson and Regression Local Ploynomial, which are one of the types of non-linear
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreA .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marr
... Show More