Rheumatoid arthritis is an autoimmune diseasecharacterized by chronic inflammationthat affects joints and cartilage. Bone complications such asRA-relatedosteoporosis are one of the most extra-articular manifestations. Many inflammatory mediators are released during RA disease pathophysiology; these mediators stimulate osteoclast genesis of bone by direct effects on RANKL and OPG. The study aimedto measure RANKL, OPG in RA patients treated with Etanercept only and other groups treated with Methotrexate onlyat baseline and after three months to evaluate bone state. An observational case-control prospective study was done on 30 RA patients who received MTX, 30 RA patients who received ETN, and 30 healthy,age-matched control groups. The level of RANKL and OPG was measured at baseline and after three months of therapy by immunoenzymatically assay (ELISA). The results were tabulated and statistically analyzed usingthe statistical package for social science. The result demonstrated that RANKL level had a positive correlation with age and disease duration in contrast to OPG level showed a negative correlation with age and duration of disease. In the patients group treated with MTX at baseline, the RANKL level was significantly higher (181.336±65.583) than post-therapy (166.097±69.229), while the OPG level at baseline significantly lower (594.398±133.238) than post therapy (614.499±150.879). In ETN treated patients, the level of RANKL in baseline was significantly higher than (231.247±73.134) RANKL level post-therapy (200.363±76.807), while OPG level in baseline waslower (463.263±96.392) than post therapy (503.608±107.692). The study demonstrated in baseline RANKL/OPG ratio significant higher (0.4340±0.234) than post therapy (0.3690±0.222). All RA patients had or were at high risk for osteoporosis.Both Etanarcept and methotrexate produce insignificant differences on OPG and RANKL levels, in the same time this biomarkers are not good indicators for bone state.
The downhole flow profiles of the wells with single production tubes and mixed flow from more than one layer can be complicated, making it challenging to obtain the average pressure of each layer independently. Production log data can be used to monitor the impacts of pressure depletion over time and to determine average pressure with the use of Selective Inflow Performance (SIP). The SIP technique provides a method of determining the steady state of inflow relationship for each individual layer. The well flows at different stabilized surface rates, and for each rate, a production log is run throughout the producing interval to record both downhole flow rates and flowing pressure. PVT data can be used to convert measured in-situ r
... Show MoreThe best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Two locally isolated microalgae (Chlorella vulgaris Bejerinck and Nitzschia palea (Kützing) W. Smith) were used in the current study to test their ability to production biodiesel through stimulated in different nitrogen concentration treatments (0, 2, 4, 8 gl ), and effect of nitrogen concentration on the quantity of primary product (carbohydrate, protein ), also the quantity and quality of lipid. The results revealed that starvation of nitrogen led to high lipid yielding, in C. vulgaris and N. palea the lipid content increased from 6.6% to 40% and 40% to 60% of dry weight (DW) respectively.Also in C. vulgaris, the highest carbohydrate was 23% of DW from zero nitrate medium and the highest protein was 50% of DW in the treatment 8gl. Whil
... Show MoreAW Ali T, Journal of the Faculty of Medicine, 2015 - Cited by 3
Cloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreThe covid-19 pandemic sweeping the world and has rendered a large proportion of the workforce as they are unable to commute to work. This has resulted in employees and employers seeking alternative work arrangements, including the software industry. Then comes the need for the global market and international presence of many companies to implement the global virtual teams (GVTs). GVTs members are gradually engaged in globalized business environments across space, time and organizational boundaries via information and communication technologies. Despite the advancement of technology, the project managers are still facing many challenges in communication. Hense, to become a successful project manager still a big challenge for them. This study
... Show MoreThe syntheses, characterization and experimental solid state X-ray structures of five low-spin paramagnetic 2-pyridyl-(1,2,3)-triazole-copper compounds, [Cu(Ln)2Cl2], are presented in this study, for the following five Ln ligands: L1 = 2-(1-(p-tolyl)-1H-(1,2,3-triazol-4-yl)pyridine), L2 = 2-(1-(4- chlorophenyl)-1H-(1,2,3-triazol-4-yl)pyridine), L3 = 4-(4-(pyridin-2-yl)-1H-(1,2,3-triazol-4-yl)benzonitril), L4 = 2-(1-phenyl-1H-(1,2,3-triazol-4-yl)pyridine) and L5 = 2-(1-(4-(trifluoromethyl)phenyl)-1H-(1,2,3- triazol-4-yl)pyridine). These five [Cu(Ln)2Cl2] complexes each contain two bidentate 2-pyridyl-(1,2,3)- triazole (Ln) and two chloride ions as ligands, with the Cu–N(pyridine) bonds, Cu–N(triazole) and Cu–Cl bonds trans to each othe
... Show More