In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach has been performed very successfully, with better results obtained with the FFNN with modified wavelet activation function (FFMW) when compared with classic FFNN with Sigmoid activation function (FFS) .One can notice from the simulation that the FFMW can be capable of identifying the 4-Links of SCARA robot more efficiently than the classic FFS
Concentrated research topic in the study of key variables in the work of the inspectors general offices , which are in the application of quality management standards audit work and reduce the incidence of corruption. It highlights the importance of current research in being a serious attempt aimed at highlighting the role of the importance of standards of quality management audit work , because they represent a router and leader of the accountant or ( Sergeant ) in the performance of his work and the extent of compliance with these standards , as well as highlight the role of quality audit in reducing the incidence of corruption , of during the professional performance of Higher auditors and determine the responsibilities entrus
... Show MoreAs material flow cost accounting technology focuses on the most efficient use of resources like energy and materials while minimizing negative environmental effects, the research aims to show how this technology can be applied to promote green productivity and its reflection in attaining sustainable development. In addition to studying sustainability, which helps to reduce environmental impacts and increase green productivity, the research aims to demonstrate the knowledge bases for accounting for the costs of material flow and green productivity. It also studies the technology of accounting for the costs of material flow in achieving sustainable development and the role of green productivity in achieving sustainable development. According
... Show MoreTitanium dioxide nanorods have been prepared by sol-gel template
method. The structural and surface morphology of the TiO2 nanorods was
investigated by X-ray diffraction (XRD) and atomic force microscopy
(AFM), it was found that the nanorods produced were anatase TiO2 phase.
The photocatalytic activity of the TiO2 nanorods was evaluated by the
photo degradation of methyl orange (MO). The relatively higher
degradation efficiency for MO (D%=78.2) was obtained after 6h of exposed
to UV irradiation.
Bacteriocins were partially purified by ammonium sulphate 50% concentraction, bacteriocin activity of Pediococcus acidilactici-FMAC278 was 25600 U/ml with 5.8 folds and 7.6% yeild, the activity decrease to 12800 U/ml after dialysis with 6.3 folds and 3% yield, On the other hand the bacteriocin activity of Weissella paramesenteroides-DFR6 was 12800 U/ml with 2.7 folds and 8.8% yeild, after dialysis the activity became 6400 U/ml with 5.1 fold and 3.4% yield, Chicken Sausage were made by adding 0.25, 0.5 and 1% particaly purified bacteriocin to study its effect on microorganisms and increasing shelf life of Sausage. It is found that bacterial numbers were decreased after 3 days of storage at refrigerator at 0.5% conc. While the molds decrea
... Show MoreCharacterization of the heterogonous reservoir is complex representation and evaluation of petrophysical properties and application of the relationships between porosity-permeability within the framework of hydraulic flow units is used to estimate permeability in un-cored wells. Techniques of flow unit or hydraulic flow unit (HFU) divided the reservoir into zones laterally and vertically which can be managed and control fluid flow within flow unit and considerably is entirely different with other flow units through reservoir. Each flow unit can be distinguished by applying the relationships of flow zone indicator (FZI) method. Supporting the relationship between porosity and permeability by using flow zone indictor is ca
... Show MoreWith the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases
... Show Moremodel is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales
Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin
... Show More