Optical Mark Recognition (OMR) is an important technology for applications that require speedy, high-accuracy processing of a huge volume of hand-filled forms. The aim of this technology is to reduce manual work, human effort, high accuracy in assessment, and minimize time for evaluation answer sheets. This paper proposed OMR by using Modify Bidirectional Associative Memory (MBAM), MBAM has two phases (learning and analysis phases), it will learn on the answer sheets that contain the correct answers by giving its own code that represents the number of correct answers, then detection marks from answer sheets by using analysis phase. This proposal will be able to detect no selection or select more than one choice, in addition, using MBAM make it timeless because it will deal with a complete answer sheet, it no need to extract the answer boxes from the answers sheet. The proposed OMR exhibits accuracy is 99.998% in the recognition of marked and non-marked.
The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreThe aim of this work was to estimate the concentrations of natural and artificial nuclides in some fertilized and unfertilized plant samples. These samples were collected and prepared in a petri dish for the measurements using gamma spectroscopy. The average values of 238U, 232Th, 40K, and 137Cs for the unfertilized plant samples were (11.964 ± 3.226, 8.273 ± 2.639, 402.436 ± 18.099, and 2.761 ± 1.613) respectively, and for the fertilized plant samples were (30.434 ± 5.282, 22.584 ± 4.620, 711.332 ± 25.806, and 6.986 ± 2.542) respectively. The average values of radiological hazard indices, Raeq, D, D for 137Cs, (AEDE)in, (AEDE)out, Iγ, Hin, and Hout for the unfertilized plant samples were (54.782 ± 7.216, 27.306, 0.469, 0.
... Show MoreFor aspirin estimated, a molecularly imprinted polymer MIP-ASP electrodes were generated by electro-polymerization process, the electrodes were prepared by combining the template (aspirin) with (vinyl acetate (VA), 1-vinylimidizole (VIZ) as a functional monomer and N, N-methylene bisacrylamide (MBAA) as crosslinkers using benzoyl peroxide (BPO) as an initiator. The efficiency of the membrane electrodes was analyzed by differential pulse voltammetry (DPV). Four electrodes were synthesized using two different plasticizers, di-butyl sebacate (DBS), di-octyl phthalate (DOP) in PVC matrix. Scanning electron microscopy (SEM) was used to describe the generated MIP, studying the electrodes properties, the slope, detection limit, and life
... Show More