The chemical bath deposition technique (CBD) is considered the cheapest and easiest compared with other deposition techniques. However, it is highly sensitive to effective parameter deposition values such as pH, temperature, and so on. The pH value of the reaction solution has a direct impact on both the nucleation and growth rate of the film. Consequently, this study presents a novel investigation into the effect of a precise change. in the pH reaction solution value on the structural, morphological, and photoresponse characteristics of tin monosulphide (SnS) films. The films were grown on a flexible polyester substrate with pH values of 7.1, 7.4, and 7.7. The X-ray diffraction patterns of the grown films at pH 7.1 and 7.4 confirmed their polycrystalline nature. Additionally, an observed alteration in the crystal structure occurred as the pH value increased from 7.1 to 7.4, resulting in a transition from an orthorhombic crystal structure to a cubic crystal structure. In contrast, the XRD pattern of the grown film at pH 7.7 revealed that it was amorphous. The field-emission scanning electron microscopy images revealed a flower-like morphology for the grown film at 7.1, whereas the grown films at 7.4 and 7.7 revealed a grain morphology. The results also showed that the pH values were also having an important effect on the energy gap value (Eg ) of films; the Eg values were 1.46, 1.57, and 1.65 eV for pH 7.1, 7.4, and 7.7, respectively. The photodetectors fabricated using grown films exhibited excellent photoresponse characteristics. when subjected to near-infrared (750 nm) illumination. It was also demonstrated that the photodetector using. the cubic structure film possessed faster response times and greater sensitivity than the photodetector using the orthorhombic structure film.
Background In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
A chemometric method, partial least squares regression (PLS) was applied for the simultaneous determination of piroxicam (PIR), naproxen (NAP), diclofenac sodium (DIC), and mefenamic acid (MEF) in synthetic mixtures and commercial formulations. The proposed method is based on the use of spectrophotometric data coupled with PLS multivariate calibration. The Spectra of drugs were recorded at concentrations in the linear range of 1.0 - 10 μg mL-1 for NAP and from 1.0 - 20 μg mL-1 for PIR, DIC, and MEF. 34 sets of mixtures were used for calibration and 10 sets of mixtures were used for validation in the wavelength range of 200 to 400 nm with the wavelength interval λ = 1 nm in methanol. This method has been used successfully to quant
... Show MoreIntroduction: Inadequate pain assessment and management is a problem in hospitalized patients that impairs their wellbeing. Intensive care unit nurses’ pain practices are affected by several barriers and enablers. Objectives: The objectives of this study were to determine the level of nurses’ practices and perceived barriers related to pain assessment in critically ill patients. Methodology: A cross-sectional design study was used. Purposive sampling technique was employed, including 100 nurses recruited from 8 intensive care units in Baghdad city, Iraq. The study was conducted from September 1st to October 20th, 2022. The pain assessment and management for critically ill patients survey was used to collect data. Descriptive sta
... Show MoreIn this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin) were applied in this stud
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show More