This study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially their utility in allocating a problem to a specific developer. An analysis was conducted on two key areas: first, the development of a model to represent developer prioritizing within the bug repository, and second, the use of hybrid machine learning techniques to select bug reports. Moreover, we use our model to facilitate developer assignment responsibilities. Moreover, we considered the developers’ backgrounds and drew upon their established knowledge and experience when formulating the pertinent objectives. An examination of two individuals’ experiences with software defects and how their actions impacted their rankings as developers in a software project is presented in this study. Researchers are implementing developer categorization techniques, assessing severity, and reopening bugs. A suitable number of bug reports is used to examine the model’s output. A developer’s bug assignment employee has been established, enabling the program to successfully address software maintenance issues with the highest accuracy of 78.38%. Best engine performance was achieved by optimizing and cleansing data, using relevant attributes, and processing it using deep learning.
in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach
Moment invariants have wide applications in image recognition since they were proposed.
In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.
* Khalifa E. Sharquie1, Hayder Al-Hamamy2, Adil A. Noaimi1, Mohammed A. Al-Marsomy3, Husam Ali Salman4, American Journal of Dermatology and Venereology, 2014 - Cited by 2
Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreIn this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).
Samples (4th) reviewed are deposited and stored in the Iraqi Natural History Museum (INHM), and there are 4th of them. Sciurus anomalous (Güldenstädt, 1785) species are preserved and mummified. It is a Caucasian squirrel (S. anomalus) that was medium in size, with a grayish-to-chestnut color, a golden gray back, and a golden tail. It is found in the forests of East and Southeast Asia. The variety possessed for the study was previously registered in the vertebrate literature by several authors and was stored by scientific methods in the museum. As a result of the multiplication and growth of these species, and to know the environmental changes that occurred in them, they were compared with models and samples found throughout Iraq
... Show More