This study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially their utility in allocating a problem to a specific developer. An analysis was conducted on two key areas: first, the development of a model to represent developer prioritizing within the bug repository, and second, the use of hybrid machine learning techniques to select bug reports. Moreover, we use our model to facilitate developer assignment responsibilities. Moreover, we considered the developers’ backgrounds and drew upon their established knowledge and experience when formulating the pertinent objectives. An examination of two individuals’ experiences with software defects and how their actions impacted their rankings as developers in a software project is presented in this study. Researchers are implementing developer categorization techniques, assessing severity, and reopening bugs. A suitable number of bug reports is used to examine the model’s output. A developer’s bug assignment employee has been established, enabling the program to successfully address software maintenance issues with the highest accuracy of 78.38%. Best engine performance was achieved by optimizing and cleansing data, using relevant attributes, and processing it using deep learning.
Background and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show MoreThe dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes
This study investigates the potential of biogas recovery from used engine oil (UEO) by co-digestion with animals’ manure, including cow dung (CD), poultry manure (PM), and cattle manure (CM). The experimental work was carried out in anaerobic biodigesters at mesophilic conditions (37°C). Two groups of biodigesters were prepared. Each group consisted of 4 digesters. UEO was the main component in the first group of biodigesters with and without inoculum, whereby a mix of UEO and petroleum refinery oily sludge (ROS) was the component in the second group of biodigesters. The results revealed that for UEO-based biodigesters, maximum biogas production was 0.98, 1.23, 1.93, and 0 ml/g VS from UEO±CD, UEO±CM, UEO±PM, and U
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreNimodipine (NMD) is a dihydropyridine calcium channel blocker useful for the prevention and treatment of delayed ischemic effects. It belongs to class ? drugs, which is characterized by low solubility and high permeability. This research aimed to prepare Nimodipine nanoparticles (NMD NPs) for the enhancement of solubility and dissolution rate. The formulation of nanoparticles was done by the solvent anti-solvent technique using either magnetic stirrer or bath sonicator for maintaining the motion of the antisolvent phase. Five different stabilizers were used to prepare NMD NPs( TPGS, Soluplus®, HPMC E5, PVP K90, and poloxamer 407). The selected formula F2, in which Soluplus
has been utilized as a stabilizer, has a par
... Show More